
IRON-HID: Create Your Own Bad USB

Seunghun Han

National Security Research Institute

hanseunghun@nsr.re.kr

Wook Shin

National Security Research Institute

wshin@nsr.re.kr

Junghwan Kang

National Security Research Institute

ultract@nsr.re.kr

Jun-Hyeok Park

National Security Research Institute

parkparkqw@nsr.re.kr

HyoungChun Kim

National Security Research Institute

khche@nsr.re.kr

Eungki Park

National Security Research Institute

ekpark@nsr.re.kr

Jae-Cheol Ryou

Chungnam National University

jcryou@cnu.ac.kr

Abstract

With the development of semiconductor processes and the

emergence of open-source hardware, there has been a rise

in low-cost, high-performance embedded hardware of wide

variety. Consequently, the maker culture, in which users cre-

ate the tools that they require and share them with others,

is spreading. In addition, security researchers are creating

custom security inspection tools by using these embedded

hardware. We have analyzed some of the existing custom

security inspection tools, and developed IRON-HID, a tool

with superior and more accurate functions than the existing

tools. IRON-HID is designed to be attached to the existing

hardware, and is composed of a custom device, firmware that

operates the hardware, a test agent program that are installed

on the host, and a commander program that are installed on

user’s smartphones. IRON-HID offers keyboard input trans-

mission and monitoring, test agent installation, command

execution, screen capturing, and file transmission functions

so that it can be used in various penetration tests. The se-

curity inspector can control functions of IRON-HID using a

smartphone, and can utilize penetration tests in various en-

vironments. Further, the security inspector gains the ability

to inspect security weak points in a smartphone, a Point of

Sale (POS) system, and a PC by attaching IRON-HID with

a keyboard, a portable charger, or a card reader.

1. Introduction

With the development of technology in the area of semi-

conductor processes, there has been a rise in low-cost, high-

performance embedded hardware. Moreover, with the emer-

gence of open source hardware, which enables sharing of

hardware information without restriction, there are now

many different types of embedded hardware. The recent em-

bedded hardware, such as the Arduino [1] and Raspberry

PI [15] has exclusive development tools and user guides so

that people can use them with ease and convenience. Conse-

quently, maker cultures, in which tools that one requires are

created and shared, are becoming popular and are spreading

through online and offline communities, such as Make Faire

[12], Hack a Day [8], and Raspberry PI community.

This phenomenon has triggered the emergence of a new

type of security inspection tools. Security researchers can

now use low-cost, high-performance embedded hardware to

create security inspection tools with ease. Lau et al. [11] and

Dunning [5] attached a custom device, based on embedded

hardware, onto a legacy device, and showed how security

threats on the iPhone and POS systems can be inspected.

The custom device based security inspection tool is small in

size and its inspection software functions are operated using

the hardware. Therefore, it offers the advantage of being

portable, and an inspection can still be performed when

software cannot be installed, or in restricted environments.

In this paper, we have analyzed the functions of the exist-

ing custom security inspection tools, and presented IRON-

HID with superior and more accurate functions than the ex-

isting tools. IRON-HID is a framework comprising a cus-

tom device, firmware that operates this custom device, a test

agent program that is installed on the host, and a commander

program that is installed on user’s smartphone. IRON-HID

offers keyboard emulation functions that monitor and trans-

mit keyboard entries, and a function that simulates mass-

storage for installation on the test agent program host (PC,

POS, and smartphone). It also offers the ability for the secu-

rity inspector to control these functions using a smartphone.

We used several small embedded hardware equipped with

1

Name Environment
Power

Consumption
I/O Pin Description

Arduino

Open-source

Hardware and

Software

Low

- 22 Pin

(Nano)

- 60 Pin

(Mega)

- Various sizes (Nano to Mega) and low performance.

- Most successful embedded hardware with Raspberry PI.

- Uses various processors from ATmega168 to SAM3X8E.

- Uses Arduino Sketch for easy programming.

Glitch [7]

Open-source

Hardware and

Software

Low - 10 Pin

- Small size and low performance.

- Uses AT90USB1287 processor.

- Uses Arduino Sketch for easy programming.

Teensy [14]
Open-source

Software
Low - 46 Pin

- Small size and low performance.

- Uses AT90USB1286 processor.

- Uses Arduino Sketch for easy programming.

BeagleBone

Black [3]

Open-source

Hardware and

Software

High - 72 Pin

- Large size and high performance.

- Uses AM335x processor.

- Can run Android and Linux.

USB

Armory [10]

Open-source

Hardware and

Software

High - 5 Pin

- Small size and high performance.

- Uses i.MX53 processor.

- Can run Android and Linux.

Raspberry

PI

Open-source

Software
High - 40 Pin

- Large size and high performance.

- Most successful embedded hardware with Arduino.

- Uses BCM3847 processor.

- Can run Android and Linux.

Table 1. Types of Embedded Hardware and their Characteristics

several I/O pins to create a custom device so that IRON-

HID can be attached to the legacy device. The design was

also made so that the functions of IRON-HID can be ex-

panded through the commander program installed on the

smartphone and the test agent installed on the host. IRON-

HID, with an expandable design and structure, can be used

for penetration tests in various environments. This paper is

structured as follows. Section 2 explains the background of

the study while Section 3 explains the design and creation

of IRON-HID. Section 4 and Section 5 evaluate and discuss

IRON-HID, and Section 6 concludes this paper.

2. Background

2.1 Hardware-based Security Inspection Tools

There are two ways to create a hardware-based security in-

spection tool. First is a method that modifies the firmware in-

side the device, and the second is a method that attaches the

custom device onto the device. The device is composed of

hardware and firmware. Firmware is software that drives the

hardware. The manufacturer usually offers firmware updates

to add functions to the device or improve its functions, or fix

security weak points in the firmware. Security researchers

can add security inspection functions by using firmware up-

dates that are offered by the manufacturer or by overwriting

the flash memory in the firmware with new firmware. When

the security inspector connects these devices to the user PC

for inspection, they can inspect the weak points of the user

PC, check whether permissions can be raised higher [9], or

check if the user’s confidential information can be leaked

[2].

The method of adjusting the firmware is less expensive

than attaching a custom device, and is advantageous because

there is no limit to the device’s size. However, we must first

assess the structure of the hardware via reverse engineering,

and the inspection tool’s functions are limited because it only

offers functions that can be offered by the parts on the legacy

device.

If an inspection tool is created using a custom device, we

can overcome the aforementioned hardware function limi-

tation. Moreover, if the inspection tool is designed so that

custom device for inspection can be attached to legacy hard-

ware, its range of movement increases because movement is

possible through the inspection tool itself [5]. However, it

is expensive to create and attach a custom device, and there

may be devices that cannot be attached because of the size

of the custom device.

2.2 Embedded Hardware for Custom Device Creation

Embedded hardware that is used to create custom devices is

becoming smaller and more diverse, and can be easily pur-

chased through online stores. There is a variety of embedded

hardware that are being sold in the current market, from low-

power, low-performance hardware that use 8-bit micropro-

cessors all the way to high-power, high-performance hard-

ware that use 32-bit microprocessors. These different types

of embedded hardware are listed in Table 1.

Functions and performance vary in embedded hardware,

and we must make decisions about creating custom device

2

Figure 1. Arduino Mega (left) and Teensy (right)

after checking the power required for operation and whether

all the required functions are included.

3. Design and Implementation

3.1 Requirements of IRON-HID

Hardware Requirements IRON-HID is a framework that

is attached to the existing USB devices, expands the func-

tions of legacy devices, and efficiently and automatically in-

spects their weak points. IRON-HID can be created by cus-

tomizing embedded hardware, and the standards for select-

ing an appropriate embedded hardware include power con-

sumption, I/O pin count, and USB communication support.

Thus, IRON-HID’s hardware requirements are as follows:

• Less Power Consumption

- The maximum current that can be used for USB

2.0 is 500 mA.

- Power consumption should be less since it is at-

tached to a legacy device.

• Many I/O Pins

- Having more I/O pins is advantageous in order

to attach onto various types of devices (for example,

keyboard, mouse, portable chargers, and card readers.)

• Internal USB Communication Functions

- It is difficult for low-performance embedded hard-

ware to process USBs that communicate at high-speed

with software.

- If USB communication functions are equipped at

the hardware’s level, communication efficiency increases

and the firmware’s code size decreases.

Comparing the above requirements with the embedded

hardware in Table 1, Arduino and Teensy were selected. Ar-

duino Mega has a relatively large flash memory with many

I/O pins. Due to its large size, it is most appropriate for at-

taching on large devices with complex functions. Teensy has

a relatively small flash memory, but due to its small size,

it can be attached to devices of various sizes. The detailed

specifications for Arduino Mega and Teensy are as follows.

• Arduino MEGA

- Low power consumption, 60 I/O pin, 256KB flash

memory, 4 inch x 2.1 inch.

- Uses ATmega2560 and ATmega16U2 with USB

communication functions.

- Used when the device to be attached on is large,

and when many I/O pins are required.

• Teensy

- Low power consumption, 46 I/O pin, 128KB flash

memory, 2 inch x 0.7 inch.

- Uses AT90USB1286 with USB communication

functions.

- Can be used on devices of various sizes.

Functional Requirements IRON-HID is a framework that

facilitates penetration tests by connecting to POS systems,

PCs, and smartphones. The device for inspection may not

offer network, keyboard, storage devices, and other sur-

rounding devices, depending on the installation environ-

ment. Therefore, IRON-HID offers the following functions

so that a penetration test can be conducted in various envi-

ronments.

• Small form factor and communicates with a smartphone

program.

• Emulates a CD-ROM, so that it can install a test agent

program without a network connection.

• Hooks onto a user’s keyboard event and sends keystrokes

to the pen-tester.

• Performs screen captures of the target device.

• Receives input from a penetration tester via the smart-

phone program and sends it to the target machine.

3.2 Overall Architecture and Protocol

3.2.1 Architecture

IRON-HID is composed of four parts: a custom device with

embedded hardware and communication modules, firmware

that operates the custom device, a test agent program that are

installed on the host, and a commander program for user’s

smartphone. Figure 2 is a schematic diagram of IRON-HID.

The custom device is composed of embedded hardware

and wireless communication modules. It is attached onto the

proxy device and IRON-HID firmware is installed on the

custom device. When IRON-HID firmware is connected to

hosts, such as a POS, a PC, or a smartphone, it becomes a

key part that takes charge of USB device functions. IRON-

HID firmware contains test agent programs, and when con-

nected to a host, the keyboard and CD-ROM functions are

activated and the test agent program is installed on the host.

The commander program that is installed on the security

inspector’s smartphone is connected to IRON-HID’s wire-

less communication module. The commander program sends

keyboard events to IRON-HID firmware or sends a request

to the test agent program to execute the command, and it re-

ceives the results of commands from the test agent program.

A shell command is sent from the commander program pro-

3

Target POS systems, PCs, smartphones

�✁✂✄☎✆✝✞ ✆✟✠✡✁✂✝☛☎☞ smartphone

Embedded hardware
(Low-powered hardware)

Wireless module
(WiFi, Bluetooth, cellular, etc.)

Receive results of commands
Receive status of a proxy device

Execute shell commands
Send keyboard events

Capture screens
Get files

Send commands and events
Install a test agent program

Receive results of commands
(Results of shell, screens, files)

Test agent (TA) program

IRON-HID firmware
(USB functions and a CD-ROM image)

Custom device
(in proxy devices)

IRON-HID commander program
: IRON-HID
 component

Figure 2. IRON-HID Architecture

cessed from the command-line interpreter, and a screen cap-

ture command and a host file transmission command are pro-

cessed internally from the test agent program.

3.2.2 Communication Protocol

The test agent program, firmware, and commander program

are connected to each other in IRON-HID, and simple com-

munication protocols are defined in order to communicate.

Table 2 shows the communication protocols that are defined

by IRON-HID.

The firmware acts as a path that connects the test agent

program and the commander program, and bypasses the

delivered packets from both the sides as it is. The work that

is processed by the firmware uses binary magic strings to

send commands.

The test agent program and the commander program use

the identifiers in Table 2 to compose data, and process the

received data through each of the internal parsers. If new

functions are required, it can be done by simply adding

a protocol to the test agent program and the commander

program.

3.3 Hardware Part

The hardware part directly connects with the POS, PC,

or mobile device through a USB, and is composed of the

embedded device that was selected in advance (Arduino

Mega, Teensy), the wireless communication module, and

the USB On-The-Go (OTG) cable. The wireless commu-

nication module can be selected from Bluetooth, WiFi, or

cellular networks. We used the Bluetooth serial communi-

cation module (RN-42 silver) in this paper. The Bluetooth

serial module is a module that uses a serial protocol to send

and receive data, and is often used to expand the embedded

hardware’s serial communication functions to wireless com-

munication. Bluetooth serial communication modules differ

with each manufacturer, but the pin used for communication

Figure 3. Pin Composition of the Bluetooth Serial Commu-

nication Module (RN-42 Silver)

Figure 4. Smartphone Cable Disassembly Process (left) and

OTG Cable Creation Method (right)

is identical. Figure 3 shows the pin composition of the Blue-

tooth serial communication module. The VCC is a pin that

permits power, and the GND is a ground connection pin. The

TX pin is for sending data to the embedded device, and the

RX pin is for receiving data from the embedded device.

Arduino Mega and Teensy contains hardware modules

for serial communication. In Arduino Mega, the TX pin is

connected to the 18 pin and the RX pin is connected to the

19 pin for serial communication. In Teensy, the TX pin is

connected to the D3 pin, and the TX pin is connected to the

D2 pin. For making the custom device, the TX pin and RX

pin in the embedded hardware are replaced with the RX pin

and TX pin of the Bluetooth communication module. The

USB OTG cable is a cable that activates USB host functions

of the smartphone, and the user use the OTG cable to connect

the keyboard, mouse, or storage device to the smartphone.

Micro USBs that are used in smartphones are composed of

5 pins, and can easily create an OTG cable if the ID pins (4

pins) and GND pins (5 pins) are connected. Figure 4 shows

the process of creating an OTG cable. OTG cables that are

created as such can connect IRON-HID to smartphones to

inspect the security weak points.

3.4 Firmware Part

Firmware that controls the custom device and acts as a

USB device are composed of keyboard emulation functions,

4

Direction Protocol Type Description

Commander program ->

Firmware

Magic String 1 +

<Command>

- The commander program sends the Magic String 1 to the firmware, and

switches the firmware’s mode to the command transfer mode.

- When switched to the command transfer mode, the firmware temporarily

stores data that is received from the commander program in its buffer, and

then sends it to the test agent program.

- Before sending the command from the commander program to the test

agent program, the firmware mode must be switched to the command

transfer mode.

Commander program ->

Firmware

Magic String 2 +

<Keyboard Event>

- The commander program sends the Magic String 2 to the firmware, and

switches the firmware’s mode to the key event transfer mode.

- When switched to the keyboard event transfer mode, the firmware changes

the keyboard input event that is received from the commander program

into an HID report and sends it to the host.

- Before sending the key input event from the commander program to the

test agent program, the firmware mode must be switched to the command

transfer mode.

Commander program ->

Firmware
Magic String 3

- The commander program sends the Magic String 3 to the firmware, and

activates mass-storage (CD-ROM) functions of the firmware.

Commander program ->

Test agent program
C;<Command>;

- The commander program sends a command to the test agent program, and

requests execution from the command-line interpreter of the host.

Commander program ->

Test agent program
G;<File Name>; - The commander program requests file transmission from the test agent program.

Commander program ->

Test agent program
S;; - The commander program requests screen capture from the test agent program.

Test agent program ->

Commander program
F;;<64byte Data>;

- The test agent program sends the processed results (command execution results,

file data, and capture data) to the commander program.

Firmware ->

Commander program
M;;<Keyboard Event>;

- The firmware logs the user’s keyboard event and sends it to the commander

program.

- Sends if IRON-HID is attached to the keyboard.

Firmware ->

Commander program
D;;<Debug Message>; - The firmware sends a debug message to the commander program.

Table 2. Protocols of IRON-HID

mass-storage (CD-ROM) emulation functions, and vendor

command communication functions. When the USB device

is connected to the host, the USB descriptor that is stored

with interface information and endpoint information is sent

to the host, and makes known the functions provided by

the device. The host interprets the received USB descrip-

tor and creates a communication channel with the USB

device. It sends and receives keyboard data, mouse data,

mass-storage data, and vendor command data with the USB

device through the independent channel. Table 3 shows the

interface and the endpoint that are created by IRON-HID. In

the endpoint and transfer type categories, the interrupt type

is a method in which the host periodically checks if data

exists from the device. Because it guarantees latency, it uses

the same input device as the keyboard or mouse that sends

data periodically. The control type is a method that is used to

send and receive important and urgent data. It performs con-

trol functions related to USB connections or is used when

sending or receiving random data that is defined from the

vendor. The bulk type is used to transfer a large amount of

data, and employed for storage devices as mass-storage.

Interface Endpoint Type Description

0 1 Interrupt
- Used for keyboard

data communication.

1 2 Control

- Used for vendor

command data com-

munication.

2 3 Bulk

- Used for mass-storage

(CD-ROM) data com-

munication.

- Sends data from

the host to the device.

2 4 Bulk

- Used for mass-storage

(CD-ROM) data com-

munication.

- Sends data from the

device to the host.

Table 3. Interface and Endpoint of IRON-HID

IRON-HID firmware is designed to be equipped with

the ISO images for the installation of the test agent pro-

grams and two queues for internal keyboard transmission

5

and command transmission. The USB device may only send

data when the host requests data. Therefore, when the com-

mander program sends keyboard events and commands, the

firmware stores the data in a buffer temporarily and waits for

the request of the host. The ISO image inside the firmware is

composed of the test agent program file and the autorun.inf

file, and the host runs it automatically. It changes into a bi-

nary form and is built with the firmware source code. The

ISO image inside the firmware is sent when bulk I/O is re-

quested from the host, and is mounted as a CD-ROM in

the host. Storage space in the custom device is hundreds of

kilobytes, therefore, ISO image should be smaller than flash

memory size of the custom device and includes only the nec-

essary functions.

IRON-HID firmware is based on lightweight USB frame-

work for AVRs (LUFA) [6], and the CD-ROM emulation

function uses the USB CD emulation project [4]. LUFA pro-

vides an API that abstracts USB communication functions

that are supported in the hardware as a USB framework for

Atmel’s microprocessors inside Arduino and Teensy. When

LUFA is used, the handshaking process for the first connec-

tion of the USB can be simplified, and the USB data can be

processed through the event-driven method, which makes it

more efficient.

3.5 Test Agent Program and Smartphone Commander

Program Part

The test agent program is installed in the POS and PC. It

executes the commands sent by the firmware and returns the

results. When the test agent program is executed, it lists the

USB devices that are connected to the host, and searches

IRON-HID firmware’s Vendor ID (VID) and Product ID

(PID). If a USB device with the same VID and PID is found,

a vendor-command channel between the relevant device and

the test agent program is created. The USB devices work

passively and they wait a request from the host, therefore, the

test agent program periodically checks if there are requests

from the firmware and returns the execution results.

The commands that are executed from the test agent

are divided into commands that are processed internally by

the test agent program and commands that are processed

through the command-line interpreter. Commands that are

processed internally by the test agent program include the

host’s screen capture command and commands that sends

the host’s specific files. The test agent program uses the API

provided from the OS for capturing screens and reading files,

and the results are sent through the vendor command com-

munication channel. Commands that are processed through

the command-line interpreter uses the OS’s API and trans-

mits using the same method.

The test agent program was developed for Microsoft’s

Windows OS, but communication channel was created based

on HIDAPI [16], which supports multiple platforms. There-

fore, if only the parts related to the commands that are pro-

cessed internally by the test agent program are ported, the

test agent program can be operated on various OSes.

The commander program that is installed in the security

inspector’s smartphone creates a wireless communication

channel with IRON-HID firmware and sends and receives

the command and processed results. The commander pro-

gram activates the wireless communication functions in the

smartphone, and searches and connects wireless communi-

cation modules of IRON-HID. The commander program acts

as the interface that connects the security inspector, IRON-

HID firmware and the test agent program. The commander

program is composed of the control tab, command execution

tab and keyboard event tab. The control tab is in charge of

connecting and ending IRON-HID. The command execution

tab is in charge of the security inspector’s command exe-

cution and display of results. The keyboard event tab is in

charge of the security inspector’s keyboard input transmis-

sion and user’s keyboard event logs.

The commander program has been developed for Android

smartphones. However, if data is sent and received by ad-

hering to IRON-HID protocols, it can act as a commander

program for the PC, laptop, and other mobile devices.

4. Evaluation

4.1 Applicability

IRON-HID can be attached onto various USB devices, and

we attached it to portable chargers, card readers, and key-

boards to see the applicable functionality of IRON-HID. Fig-

ure 5 shows IRON-HID attached onto each device.

We applied IRON-HID on 1 type of portable charger,

1 type of card reader, and 3 types of keyboard, and were

successful in operating IRON-HID while maintaining the

USB device’s own functions.

4.2 Usability

IRON-HID can be used to inspect various security weak

points. To examine IRON-HID’s usability, we inspected the

open weak points of smartphones, POS, and PCs, and suc-

cessfully completed an inspection. IRON-HID offers various

functions for inspecting weak points, and when these func-

tions are combined, new weak points can be found and ex-

amined.

4.2.1 Verification of a Backup PIN Vulnerability

IRON-HID can be used to check whether the backup PIN

vulnerability exists on lock screen of the smartphone or ap-

plication. IRON-HID is activated by connecting it to the

smartphone using an OTG cable, and when IRON-HID’s

keyboard input transmission functions are used, a well-

known PIN can be sent to the smartphone. Figure 6 shows

the verification of a PIN vulnerability using IRON-HID. If

the smartphone receives PIN input unlimitedly or a weak

PIN was being used on the lock screen or application, we

could use IRON-HID to inspect this.

6

Figure 5. USB Device attached with IRON-HID - Portable

Charger (top), Card Reader (center), Keyboard (bottom)

4.2.2 Verification of an Automatic Program Execution

Vulnerability

If a USB can be connected to the POS and PC, IRON-

HID can be used to check if the program of CD-ROM is

automatically executed. If automatic execution functions are

activated, the test agent program is automatically installed

when IRON-HID is connected. When the test agent program

is installed, it notifies the installation completion through

the commander program of smartphone. Figure 7 is a scene

from checking automatic program execution in POS and PCs

by using IRON-HID. We can check whether an automatic

program execution option is turned on by connecting IRON-

HID to POS and PCs.

5. Discussion

5.1 Limitations

Because IRON-HID currently includes CD-ROM images in

the firmware, the size of the flash memory in the microcon-

troller becomes the maximum size of the test agent program.

Figure 6. Verification of a Backup PIN Vulnerability on a

Lock Screen

Figure 7. Verification of a Automatic Program Execution

Vulnerability on a POS and a PC

This limitation becomes a limiting factor for the expandabil-

ity of the test agent program. When the host requests bulk

I/O from IRON-HID, we will apply the method of sending

CD-ROM images to the firmware from the commander pro-

gram to overcome this limitation.

IRON-HID currently only supports functions for down-

loading files from the host. The penetration test is conducted

in various environments, and the required files for inspection

may not exist in the host. Therefore, the security inspector

needs to upload files for inspection, and we plan to add file

upload functions to IRON-HID.

5.2 Related Work

Among the existing works on custom security inspection

tools, there were those that modified the device’s firmware

and those that added custom devices.

7

Studies that changed the firmware include studies of Bal-

mas and Lior [2], Hudson et al. [9], and Nohl and Lell [13].

Balmas and Lior analyzed the firmware of the KVM device

that divides the keyboard, mouse, and monitor, and changed

it with a new firmware, showing that target PCs can be con-

trolled. Hudson et al. analyzed Apple’s thunderbolt adaptor

firmware and modified it to show that Apple’s PCs can be

controlled. Nohl and Lell analyzed USB storage firmware

and modified it, and added a new device without the user’s

permission and used it to show that target PCs can be con-

trolled.

Studies that add custom devices include works of Dun-

ning [5] and Lau et al. [11] Dunning used a glitch that is

compatible with Arduino to create a tool that can be at-

tached to various devices. Dunning inserted this device into a

mouse, keyboard, and PC to show that PCs can be controlled.

Lau developed a tool based on the BeagleBone Black board,

which is an embedded hardware, and inserted it into a shared

USB charging port that is installed inside the building. Lau

used this tool to show that applications can be installed on

an iPhone that is being charged in the USB charging port

without the user’s permission.

6. Conclusions

With the development of semiconductor processes there is

a rise in low-cost, high-performance embedded hardware,

and there is increased variety in embedded hardware with

the emergence of open source hardware. And with the ap-

pearance of Arduino and Raspberry PI, which is targeted for

common users, there is increased use of embedded hardware

for hobbies and in the education field. As a result of these

changes, maker cultures, in which users create the tools that

they require and share them with others, are spreading, and

security researchers are using custom devices based on em-

bedded hardware for inspecting security threats.

We have analyzed existing studies that used custom de-

vices, and developed IRON-HID, a tool with better and more

accurate functions than the existing tools. IRON-HID is a

framework composed of a custom device, firmware, a test

agent program, and a commander program. IRON-HID of-

fers features, such as keyboard input transmission and mon-

itoring, test agent program installation, command execution,

screen capture, and file transmission functions so that it can

be used in various penetration tests. All the functions of

IRON-HID can be controlled with the security inspector’s

smartphone.

7. Acknowledgements

This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded

by the Korea government (MSIP) (No.R0236-15-1006,

Open Source Software Promotion)

References

[1] Arduino. Arduino Board. https://www.arduino.cc/.

[2] Y. Balmas and L. Oppenheim. How to turn your KVM into a

raging key-logging monster. DEF CON, 2015.

[3] BeagleBoard.org Foundation. BeagleBone Board. https:

//beagleboard.org/black.

[4] Curtis Reno and JRSmile. USB CD Emulation

Project. https://sourceforge.net/projects/

usbcdemulation.

[5] J. P. Dunning. Building Trojan Hardware at Home. Black Hat

Asia, 2014.

[6] Four Walled Cubicle. Lightweight USB Framework for AVR

(LUFA). http://www.fourwalledcubicle.com/LUFA.

php.

[7] Glitch Operations LLC. Glitch Board. http://theglitch.

sourceforge.net.

[8] Hack a Day. HackaDay. http://hackaday.com/.

[9] T. Hudson, C. Kallenberg, and X. Kovah. ThunderStrike2.

Black Hat USA, 2015.

[10] Inverse Path. USB Armory. https://inversepath.com/

usbarmory.

[11] B. Lau, Y. Jang, C. Song, and T. Wang. Mactans: Injecting

malware into iOS devices via malicious chargers. Black Hat

USA, 2013.

[12] Make Media, Inc. Make Faire. http://makerfaire.com.

[13] K. Nohl, S. Kribler, and J. Lell. BadUSB - On accessories that

turn evil. Black Hat USA, 2014.

[14] PJRC. Teensy Board. https://www.pjrc.com/teensy.

[15] Raspberry PI Foundation. Raspberry PI Board. https:

//www.raspberrypi.org.

[16] Signal 11 Software LLC. HIDAPI Project. https://

github.com/signal11/hidapi.

8

