
P R O T E C T I N G Y O U R N E T W O R K

Richard Johnson
Offensive Summit 2016

Go Speed Tracer

In t roduct ion

•  Richard Johnson

–  Research Manager

–  Cisco Talos
•  Team

–  Aleksandar Nikolich

–  Ali Rizvi-Santiago
–  Marcin Noga

–  Piotr Bania

–  Tyler Bohan
–  Yves Younan

•  Talos Vulndev

–  Third party vulnerability
research

•  170 bug finds in last 12 months
–  Microsoft
–  Apple
–  Oracle
–  Adobe
–  Google
–  IBM, HP, Intel
–  7zip, libarchive, NTP

–  Security tool development
•  Fuzzers, Crash Triage

–  Mitigation development
•  FreeSentry

–  Competitive analysis

In t roduct ion

•  Agenda

–  Tracing Applications

–  Guided Fuzzing

–  Binary Translation

–  Hardware Tracing
•  Goals

–  Understand the attributes required for optimal guided fuzzing
–  Identify areas that can be optimized today

–  Deliver performant and reusable tracing engines

Appl icat ions

•  Software Engineering

–  Performance Monitoring

–  Unit Testing
•  Malware Analysis

–  Unpacking

–  Runtime behavior

–  Sandboxing

•  Mitigations

–  Shadow Stacks
–  Memory Safety checkers

Appl icat ions

•  Software Security

–  Corpus distillation
•  Minimal set of inputs to reach desired conditions

–  Guided fuzzing
•  Automated refinement / genetic mutation

–  Crash analysis
•  Crash bucketing
•  Graph slicing
•  Root cause determination

–  Interactive Debugging

Tracing Engines

•  OS Provided APIs

–  Debuggers
•  ptrace
•  dbgeng
•  signals

–  Hook points
•  Linux LTT(ng)
•  Linux perf
•  Windows Nirvana
•  Windows AppVerifier
•  Windows Shim Engine

–  Performance counters
•  Linux perf
•  Windows PDH

Tracing Engines

•  Binary Instrumentation

–  Compiler plugins
•  gcc-gcov
•  llvm-cov

–  Binary translation
•  Valgrind
•  DynamoRIO
•  Pin
•  DynInst
•  Frida and others
•  ...

Tracing Engines

•  Native Hardware Support

–  Single Step / Breakpoint
–  Intel Branch Trace Flag

–  Intel Last Branch Record

–  Intel Branch Trace Store

–  Intel Processor Trace

–  ARM CoreSight

Guided Fuzzing

Evolut ionary Test ing

•  Early work was whitebox testing

•  Source code allowed graph analysis prior to testing

•  Fitness based on distance from defined target

•  Complex fitness landscape

–  Difficult to define properties that will get from A to B
•  Applications were not security specific

–  Safety critical system DoS

Guided Fuzzing

•  Incrementally better mutational dumb fuzzing

•  Trace while fuzzing and provide feedback signal

•  Evolutionary algorithms

–  Assess fitness of current input
–  Manage a pool of possible inputs

•  Focused on security bugs

Sidewinder

•  Embleton, Sparks, Cunningham 2006

•  Features

–  Simple genetic algorithm approach
•  crossover, mutation, fitness

–  Mutated context free grammar
instead of sample fuzzing

–  Markov process for fitness
•  Analyzes probability of path taken by sample

–  Block coverage via debugger API
•  Reduced overhead by focusing on subgraphs

Sidewinder

•  Embleton, Sparks, Cunningham 2006

•  Contributions

–  Genetic algorithms for fuzzing

–  Markov process for fitness
–  System allows selection of target

code locations
•  Observations

–  Never opensourced

–  Interesting concepts not duplicated

Evolut ionary Fuzzing System

•  Jared DeMott 2007

•  Features

–  Block coverage via Process Stalker
•  Windows Debug API
•  Intel BTF

–  Stored trace reults in SQL database
•  Lots of variables required sturctured storage

–  Traditional (complex) genetic programming techniques
•  Code coverage + diversity for fitness
•  Sessions
•  Pools
•  Crossover
•  Mutation

Evolut ionary Fuzzing System

•  Jared DeMott 2007

•  Contributions

–  First opensource implementation of guided fuzzing

–  Evaluated function vs block tracing
•  For large programs found function tracing was equally effective
•  Likely an artifact of doing text based protocols

•  Observations

–  Academic
•  Approach was too closely tied to traditional genetic algorithms
•  Not enough attention to performance or real world targets
•  Only targeted text protocols

Amercian Fuzzy Lop

•  Michal Zalewski 2013

–  Bunny The Fuzzer 2007

•  Features

–  Block coverage via compile time instrumentation

–  Simplified approach to genetic algorithm
•  Edge transitions are encoded as tuple and tracked in global map
•  Includes coverage and frequency

–  Uses variety of traditional mutation fuzzing strategies

–  Dictionaries of tokens/constants
–  First practical high performance guided fuzzer

–  Helper tools for minimizing test cases and corpus

–  Attempts to be idiot proof

Amercian Fuzzy Lop

•  Michal Zalewski 2013
–  Bunny The Fuzzer 2007

•  Contributions

–  Tracks edge transitions
•  Not just block entry

–  Global coverage map
•  Generation tracking

–  Fork server
•  Reduce fuzz target initialization

–  Persistent mode fuzzing

–  Builds corpus of unique inputs
reusable in other workflows

Amercian Fuzzy Lop

•  Michal Zalewski 2013

–  Bunny The Fuzzer 2007

•  Observations

–  KISS works when applied to guided fuzzing

–  Performance top level priority in design
•  Source instrumentation can't be beat
•  Evolutionary system hard to beat without greatly increasing complexity / cost

–  Simple to use, finds tons of bugs

–  Fostered a user community
•  Developer contributions somewhat difficult

–  Current state of the art due to good engineering and feature set
–  Only mutational fuzzer system to have many third-party

contributions
•  Binary support, more robust compiler instrumentations
•  ASAN support
•  Parallelization, client/server targeting

honggfuzz

•  Robert Swiecki 2010

–  Guided fuzzing added in 2015

•  Features

–  Block coverage
•  Hardware performance counters
•  ASanCoverage

–  Bloom filter for trace recording

–  User-supplied mutation functions

–  Linux, FreeBSD, OSX, Cygwin support
•  Contributions

–  First guided fuzzer to focus on hardware tracing support

•  Observations

–  Naive seed selection for most algorithms, only the elite survive
(OTTES)

•  Some modes use bloom filter
–  Easy to extend, active development

Choronzon

•  Features

–  Aims to be cross platform

–  Brings back specific genetic programming concepts
–  Contains strategies for dealing with high level input structure

•  Chunk based
•  Hierarchical
•  Containers

–  Format aware serialization functionality
–  Uses DBI engines for block coverage

–  Attempts to be cross-platform

•  Contributions

–  Reintroduction of more complex genetic algorithms
–  Robust handling of complex inputs through user supplied

serialization routines

•  Observations

–  Performance not a focus

Honorable ment ions

•  autodafe

–  Martin Vuagnoux 2004

–  First generation guided fuzzer using pattern matching via API
hooks

•  Blind Code Coverage Fuzzer

–  Joxean Koret 2014

–  Uses off-the-shelf components to assemble a guided fuzzer
•  radamsa, zzuf, custom mutators
•  drcov, COSEINC RunTracer for coverage

•  covFuzz

–  Atte Kettunen 2015

–  Simple node.js server for guided fuzzing

–  custom fuzzers, ASanCoverage

Guided Fuzzing

•  Required

–  Fast tracing engine
•  Block based granularity

–  Fast logging
•  Memory resident coverage map

–  Fast evolutionary algorithm
•  Minimum of global population map

•  Desired

–  Portable

–  Easy to use
–  Helper tools
–  Grammar detection

•  AFL and Honggfuzz still most practical options

Binary Translation

Binary Translat ion

•  Binary translation is a robust program modification
technique

–  JIT for hardware ISAs

•  General overview is straightforward

–  Copy code to cache for translation

–  Insert instructions to modify original binary
–  Link blocks into traces

•  Performance comes from smart trace creation

–  Originally profiling locations for hot trace

–  Early optimizations in Dynamo from HP
•  Next Executing Tail
•  Traces begin at backedge or other trace exit

–  Ongoing optimization work happens here
•  Vmware - Early Exit guided

Binary Translat ion

•  Advantages

–  Supported on most mainstream OS/archs

–  Can be faster than hardware tracing
–  Can easily be targeted at certain parts of code
–  Can be tuned for specific applications

•  Disadvantages

–  Performance overhead
•  Introduces additional context switch

–  ISA compatibility not guarenteed
–  Not always robust against detection or escape

Valgr ind

•  Obligatory slide

•  Lots of deep inspection tools

•  VEX IR is well suited for security applications

•  Many cool tools already exist

–  Flayer

–  memgrind

Pin

•  “DBT with training wheels”

•  Features

–  Trace granularity instrumentation
•  Begin at branch targets, end at indirect branch

–  Block/instruction level hooking supported

–  Higher level C++ API w/ helper routines
–  Closed source

•  Observations

–  Delaying instrumentation until trace generation is slower

–  Seems most popular with casual adventurers

–  Limited inlining support
–  Less tuning options
–  Cannot observe blocks added to cache so ‘hit trace’ not

possible

Pin

•  Example

VOID	Trace(TRACE	trace,	VOID	*v)
{
				for	(BBL	bbl	=	TRACE_BblHead(trace);	BBL_Valid(bbl);	bbl
												=	BBL_Next(bbl))
				{
								BBL_InsertCall(bbl,	IPOINT_ANYWHERE,	AFUNPTR(basic_block_hook),
																							IARG_FAST_ANALYSIS_CALL,	IARG_END);
				}
}

DynamoRIO

•  “A connoisseur's DBT”

•  Features

–  Block level instrumentation
•  Blocks are directly copied into code cache

–  Direct modification of IL possible

–  Portable
•  Linux, Windows, Android
•  x86/x64, ARM

–  C API / BSD Licensed (since 2009)

•  Observations

–  Much more flexible for block level instrumentation
–  Performance is a priority

–  Powerful tools like Dr Memory
•  Shadow memory, taint tracking
•  Twice as fast as Valgrind memcheck

DynamoRIO

•  Example

event_basic_block(void	*drcontext,	void	*tag,	instrlist_t	*bb,
																		bool	for_trace,	bool	translating)
{
				instr_t	*instr,	*first	=	instrlist_first(bb);
				uint	flags;
				/*	Our	inc	can	go	anywhere,	so	find	a	spot	where	flags	are	dead.	*/
				for	(instr	=	first;	instr	!=	NULL;	instr	=	instr_get_next(instr))
				{
								flags	=	instr_get_arith_flags(instr);
								/*	OP_inc	doesn't	write	CF	but	not	worth	distinguishing	*/
								if	(TESTALL(EFLAGS_WRITE_6,	flags)	&&	!TESTANY(EFLAGS_READ_6,
																flags))
												break;
				}
…

DynamoRIO

•  Example

				if	(instr	==	NULL)
								dr_save_arith_flags(drcontext,	bb,	first,	SPILL_SLOT_1);

				instrlist_meta_preinsert(bb,	

	(instr	==	NULL)	?	first	:	instr,
								INSTR_CREATE_inc(drcontext,	

	 	OPND_CREATE_ABSMEM((byte	*)&global_count,	OPSZ_4)));
				
				if	(instr	==	NULL)
								dr_restore_arith_flags(drcontext,	bb,	first,	SPILL_SLOT_1);
				return	DR_EMIT_DEFAULT;
}

DynInst

•  “Kitchen sink binary translation”

•  Features

–  Static rewriting support
•  Dynamically linked binaries only
•  Eliminates issues with instruction cache misses common to DBT engines

–  Function level analysis
•  Tools must manually walk Dyninst provided CFG to instrument blocks

–  Modular C++ API / LGPL

•  Observations

–  Fastest binary instrumentation out there
–  Development is slow

•  Patches we sent in for PE relocation support still not merged
–  Building Dyninst is NP-Hard

•  Use my Dockerfile on github.com/talos-vulndev/afl-dyninst

DynInst

•  Example

bool	insertBBCallback(BPatch_binaryEdit	*	appBin,	BPatch_function	*	curFunc,
																						char	*funcName,	BPatch_function	*	instBBIncFunc,int	*bbIndex)
{
				unsigned	short	randID;
				BPatch_flowGraph	*appCFG	=	curFunc->getCFG	();
				BPatch_Set	<BPatch_basicBlock	*>	allBlocks;
				BPatch_Set	<BPatch_basicBlock	*>::iterator	iter;
				for	(iter	=	allBlocks.begin	();	iter	!=	allBlocks.end	();	iter++)	
				{
								unsigned	long	address	=	(*iter)->getStartAddress	();
								
								randID	=	rand()	%	USHRT_MAX;
								BPatch_Vector	<BPatch_snippet	*>	instArgs;
								BPatch_constExpr	bbId	(randID);
								instArgs.push_back	(&bbId);
…

DynInst

•  Example

…
								BPatch_point	*bbEntry	=	(*iter)->findEntryPoint();
								BPatch_funcCallExpr	instIncExpr	(*instBBIncFunc,	instArgs);
								BPatchSnippetHandle	*handle	=
												appBin->insertSnippet	(instIncExpr,	*bbEntry,	BPatch_callBefore,
																																			BPatch_lastSnippet);
								(*bbIndex)++;
				}
				return	true;
}

Tuning Binary Translat ion

•  Only instrument indirect branches

•  Delay instrumentation until input is seen

•  Only instrument threads that access the data

•  Move instrumentation logic to analysis routines

–  Some APIs provide IF-THEN-ELSE analysis with optimization

•  Avoid trampolines

–  Be aware of code locality and instruction cache
•  Inject a fork server if repeatedly executing DBT

–  See our turbotrace tool

Hardware Tracing

CPU Event Moni tor ing

•  Modern CPUs contain Performance Monitoring Units
(PMU)

•  Model Specific Registers (MSR) used for configuration

•  Types

–  Event Counters
•  Polled on-demand

–  Event Sampling (non-precise)
•  Interrupts triggered when counters hit modulus value

–  Precise Event Sampling (PEBS)
•  Uses 'Debug Store'
•  Physical memory buffers
•  Interrupt when full

•  Use Linux perf / pmu-tools to experiment

In terrupt Programming

•  Interrupts - low level messaging system for system
devices

•  Special registers allow OS to configure interrupt
handlers

–  CPU Exceptions
•  GPF, SINGLE_STEP

–  Hardware Interrupts
•  Memory mapped or IRQ based
•  All Device I/O

–  Software Interrupts
•  System calls (int 0x80)
•  Breakpoints

In terrupt Programming

•  Interrupt Service Routines (ISR)

–  Registerd by Operating systems and drivers
•  CPU checks IF flag after each instruction

–  cli and sti instructions control IF

•  CPU indexes the interrupt descriptor table to find
appropriate handler

–  Context stored / restored while servicing interrupt
•  Special Interrupts

–  int 1 - Single Step (TF)

–  int 3 - Single opcode, specifically designed for debugging
–  int 10h - Any Demosceners?
–  int 24h - DOS Critial Error Handler

•  Who remembers:
–  I/O Device Specific Error Message
–  Abort, Retry, Ignore, Fail?

In terrupt Programming

•  Programmer checklist

–  Memory must not be swapped

–  Use static variables if necessary

–  Must wrap functions with assembly
•  disable interrupts
•  push all registers
•  call interrupt handler
•  pop all registers
•  iretd

I ts a Trap

•  Single Stepping

–  Enabled by setting the Trap Flag

–  After each instruction, CPU checks flag and fires exception if
enabled

–  Accessible from userspace
–  slooooooooow, not applicable

•  Branch Trace Flag

–  Modifies single step behavior to trap on branch

–  Single flag in IA32_DEBUGCTL MSR

–  Requires kernel privileges to write to MSR

–  Windows includes a mapping from DR7 to set MSR

IA32_DEBUGCTL

–  MSR Address 0x1d9
•  LBR [0] - Enable Last Branch Record mechanism
•  BTF [1] - when enabled with TF in EFLAGS does single stepping on branches
•  TR [6] - enables Tracing (sending BTMs to system bus)
•  BTS [7] - enables sending BTMs to memory buffer from system bus
•  BTINT [8] - full buffer generates interrupt otherwise circular write
•  BTS_OFF_OS [9] - does not count for priv. level 0
•  BTS_OFF_USR [10] - does not count for priv. level 1,2,3
•  FRZ_LBRS_ON_PMI [11] - freeze LBR stack on a PMI
•  FRZ_PERFMON_ON_PMI [12] - disable all performance counters on a PMI
•  UNCORE_PMI_EN [13] - uncore counter interrupt generation
•  SMM_FRZ [14] - event counters are frozen during SMM

Branch Trace Store

•  First generation hardware
branch tracing via PMU

•  Allows configurable

memory buffer for trace
storage

•  MSR_IA32_DS_AREA

MSR defines storage
location

struct	DS_AREA	{
								u64	bts_buffer_base;
								u64	bts_index;
								u64	bts_absolute_maximum;
								u64	bts_interrupt_threshold;
								u64	pebs_buffer_base;
								u64	pebs_index;
								u64	pebs_absolute_maximum;
								u64	pebs_interrupt_threshold;
								u64	pebs_event_reset[4];
};

struct	DS_AREA_RECORD	{	

u64	flags;
u64	ip;
u64	regs[16];
u64	status;
u64	dla;
u64	dse;
u64	lat;

};

Branch Trace Store

•  First generation hardware branch tracing via PMU

•  Allows configurable memory buffer for trace storage

–  MSR_IA32_DS_AREA MSR defines storage location

–  struct DS_AREA {

–  u64 bts_buffer_base;
–  u64 bts_index;
–  u64 bts_absolute_maximum;
–  u64 bts_interrupt_threshold;
–  u64 pebs_buffer_base;
–  u64 pebs_index;
–  u64 pebs_absolute_maximum;
–  u64 pebs_interrupt_threshold;
–  u64 pebs_event_reset[4];
–  };
–  struct DS_AREA_RECORD {

•  u64 flags;
•  u64 ip;
•  u64 regs[16];
•  u64 status;
•  u64 dla;
•  u64 dse;
•  u64 lat;

–  };

Branch Trace Store

•  Branches in LBR registers spill to DS_AREA

•  Interrupts only when buffer is full

•  Steps to enable BTS

–  Allocate memory and set MSR_IA32_DS_AREA

–  Add interrupt handler to IDT
–  Register interrupt vector with APIC

•  apic_write(APIC_LVTPC, pebs_vector);
–  Select events with MSR_IA32_EVNTSEL0

•  EVTSEL_EN | EVTSEL_USR | EVTSEL_OS

–  Enable PEBS mode with MSR_IA32_PEBS_ENABLE

–  Enable CPU perf recording with MSR_IA32_GLOBAL_CTRL

•  Significantly faster than BTF

•  Still impractical for high speed tracing

In te l Processor Trace

•  Next generation hardware tracing support

–  Introduced in Broadwell / Skylake

•  Goal: full system tracing with 5-15% overhead

•  Available in

–  Linux 4.1 perf subsystem

–  Standalone Linux reference driver simple-pt
–  Intel VTune / System Studio**

•  Does not seem to work with Windows 10

In te l Processor Trace

•  Features

–  Ring -3? Can trace SMM, HyperVisor, Kernel, Userspace [CPL
-2 to 3]

–  Logs directly to physical memory
•  Bypasses CPU cache and eliminates TLB cache misses
•  Can be a contiguous segment or a set of ranges
•  Ringbuffer snapshot or interrupt mode supported

–  Minimal log format
•  One bit per conditional branch
•  Only indirect branches log dest address
•  Interrupts log source and destination
•  Decoding log requires original binaries and memory map

–  Filter logging based on CR3

–  Linux can automatically add log to coredump

–  GDB Support

In te l Processor Trace

In te l Processor Trace

•  90+ pages in
Intel Software
Developer
Manuals

•  Check with CPUID

•  EAX = 0x14 - Intel Processor Trace

•  EBX

–  Bit 00: If 1, Indicates that
IA32_RTIT_CTL.CR3Filter can be set to
1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.

–  Bit 01: If 1, Indicates support of
Configurable PSB and Cycle-Accurate
Mode.

–  Bit 02: If 1, Indicates support of IP
Filtering, TraceStop filtering, and
preservation of Intel PT MSRs across
warm reset.

–  Bit 03: If 1, Indicates support of MTC
timing packet and suppression of COFI-
based packets.

•  ECX

–  Bit 00: If 1, Tracing can be enabled with
IA32_RTIT_CTL.ToPA = 1, hence
utilizing the ToPA output scheme;
IA32_RTIT_OUTPUT_BASE and
IA32_RTIT_OUTPUT_MASK_PTRS
MSRs can be accessed.

–  Bit 01: If 1, ToPA tables can hold any
number of output entries, up to the
maximum allowed by the
MaskOrTableOffset field of
IA32_RTIT_OUTPUT_MASK_PTRS.

–  Bit 02: If 1, Indicates support of Single-
Range Output scheme.

–  Bit 03: If 1, Indicates support of output
to Trace Transport subsystem.

–  Bit 31: If 1, Generated packets which
contain IP payloads have LIP values,
which include the CS base component

•  Packet Generation (ECX = 1)

•  EAX

–  Bits 2:0: Number of configurable
Address Ranges for filtering.

–  Bit 31:16: Bitmap of supported MTC
period encodings

•  EBX

–  Bits 15-0: Bitmap of supported Cycle
Threshold value encodings

–  Bit 31:16: Bitmap of supported
Configurable PSB frequency encodings

In te l Processor Trace

•  90+ pages in
Intel Software
Developer
Manuals

•  Opensource
parsing
library!

–  Libipt

In te l Processor Trace

In te l Processor Trace

•  How to use
 $	perf	list	|	grep	intel_pt

intel_pt//																											[Kernel	PMU	event]

$	perf	record	-e	intel_pt//u	date
Sun	Oct	11	11:35:07	EDT	2015
[perf	record:	Woken	up	1	times	to	write	data]
[perf	record:	Captured	and	wrote	0.027	MB	perf.data]

$	perf	report
...
#	Samples:	1		of	event	'instructions:u'
#	Event	count	(approx.):	157207

#	Overhead		Command		Shared	Object		Symbol																				
#

			100.00%		date					libc-2.21.so			[.]	_nl_intern_locale_data
															|
															---_nl_intern_locale_data
																		_nl_load_locale_from_archive
																		_nl_find_locale
																		setlocale
...

In te l Processor Trace

•  How to use

%	sptcmd		-c	tcall	taskset	-c	0	./tcall
cpu			0	offset	1027688,		1003	KB,	writing	to	ptout.0
...
Wrote	sideband	to	ptout.sideband
%	sptdecode	--sideband	ptout.sideband	--pt	ptout.0	|	less
TIME						DELTA		INSNs			OPERATION
frequency	32
0								[+0]					[+			1]	_dl_aux_init+436
																		[+			6]	__libc_start_main+455	->	_dl_discover_osversio
n
...
																		[+		13]	__libc_start_main+446	->	main
																		[+			9]					main+22	->	f1
																		[+			4]													f1+9	->	f2
																		[+			2]													f1+19	->	f2
																		[+			5]					main+22	->	f1
																		[+			4]													f1+9	->	f2
																		[+			2]													f1+19	->	f2
																		[+			5]					main+22	->	f1
...

Next Step / Conclusions

Thank You!

talosintel.com
blog.talosintel.com

@talossecurity

@richinseattle
rjohnson@moflow.org

