

Attacking Next-Generation Firewalls

Breaking PAN-OS

Felix Wilhelm

#whoami

- Security Researcher @ ERNW Research
- Application and Virtualization Security
- Recent Research
 - Hypervisors (Xen)
 - Security Appliances (Fireeye, Palo Alto)
- ¬ @_fel1x on Twitter

The Target

- Palo Alto Next-Generation FirewallPan-OS
 - Software stack running on Palo Alto devices
- Analyzed device is a PA-500
 - .. but bugs affect all (unpatched) devices
- Main focus lies on attacks against the device itself
 - ..not detection bypasses

Features

https://www.paloaltonetworks.com

- 🦳 "Next Gen Firewall"
- Management Interfaces
 - Web + SSH
- Signature Matching
 - IPS, Exploit Detection, Wildfire Malware Analysis
- App-ID
- User-ID
- GlobalProtect

Overview

	Management Interfaces	Signature Matching	App-ID	User-ID	GlobalProtect
Availability / Interface	Trusted	Untrusted / External	Untrusted	Untrusted	External
Analyzed?	Yes	No	Partially	Yes	Yes (not for User-ID cap.)
Impression	?	-	Seems ok from first impression	?	?

Agenda

- Breaking In

- ¬ PAN-OS Architecture
- Attack Surface
 - Management Interface
 - User-ID
 - GlobalProtect
- Conclusion

Breaking In

admi	n@PA	-VM>

amin@pa-vm>	
clear	Clear runtime parameters
configure	Manipulate software configuration information
debug	Debug and diagnose
delete	Remove files from hard disk
diff	local configuration diffs
exit	Exit this session
find	Find CLI commands with keyword
ftp	Use ftp to export files
grep	Searches file for lines containing a pattern match
less	Examine debug file content
ls	Examine debug file listing
netstat	Print network connections and statistics
ping	Ping hosts and networks
quit	Exit this session
request	Make system-level requests
schedule	schedule test jobs
scp	Use scp to import / export files
set	Set operational parameters
show	Show operational parameters
ssh	Start a secure shell to another host
tail	Print the last 10 lines of debug file content
-more	

Administrative Interfaces: CLI over SSH and Web Interface

- Do not give full access to the operation system
- "Jailbreak" is a prerequisite for further research

Breaking In

- CLI is restricted interface for configuration, troubleshooting
- Several commands are wrappers around standard Linux utilities
- ¬ Command line injection in test scp-server-connection:

test scp-server-connection initiate hostname "oProxyCommand = chsh -s /bin/bash ernw" password b
username c

PAN-OS Architecture

- Linux system running on MIPS64 processor

- Cavium Octeon+ processor
- 2.6.32 Kernel for PanOS 6.X

- Virtual appliances run on x64

- Network processing built on top of standard Linux capabilities
- Advanced features implemented as proprietary Linux daemons

PAN-OS Architecture

useridd	ha	dagge	r		mgm	t global- protect	captive portal	
	authd cli				appweb3 +	PHP	openssh	
masterd sysd			cryptoo	b	GNU stack			
Linux Kernel								

PAN-OS Architecture

- Web Interfaces are implemented on top of EmbedThis Appweb 3
 - Functionality is implemented as native PHP extensions called by small PHP wrapper scripts

- Three web server instances

- Management Interface
- GlobalProtect / SSL VPN
- Captive Portal

Management Interfaces

- Hopefully on isolated interfaces
- Content-, App-, User-ID
 - Untrusted network segments
- GlobalProtect / VPN
 - External (as in the Internet)

Management Web Interface

۹ س ان	Daloalto
Name	admin
Password	
	Login

- Web UI for manual management
- REST API for automated access
- Implemented on top of Appweb3 + PHP environment
- Many features => Large attack surface
 - But most features require authentication

REST API

- REST API for automated management
- Can be reached with requests to /api URL
- POST requests will trigger call to native apiWgetFilter function
 - Unauthenticated 😊
- If request contains client=wget, curl is invoked to check authentication against internal service.

apiWgetFilter

- curl command escapes and uses following user supplied parameters:
 - "key" request parameter
 - HTTP Authentication Headers
 - Remote IP (from X-Real-Ip header if available)

¬ escapeshellarg() is used to escape values

- Puts single quote before and after value
- Escapes single quotes in value

Pseudo Code: apiWgetFilter

```
if key:
        if escapeshellarg(escaped_key, 1024, key) < 0:</pre>
                abort connection
if basic auth:
        if escapeshellarg(escaped_auth, 1024, basic_auth) < 0:</pre>
                abort connection
if headers['HTTP X REAL IP']:
        escapeshellarg(escaped ip,1024,headers['HTTP X REAL IP'])
else:
        escapeshellarg(escaped ip, 1024, remote addr)
```

call_curl(escaped_key,escaped_ip,escaped_auth)

Pseudo Code: apiWgetFilter

```
if key:
        if escapeshellarg(escaped_key, 1024, key) < 0:</pre>
                abort connection
if basic auth:
        if escapeshellarg(escaped_auth, 1024, basic_auth) < 0:</pre>
                abort connection
if headers['HTTP X REAL IP']:
        escapeshellarg(escaped_ip,1024,headers['HTTP_X_REAL_IP'])
else:
        escapeshellarg(escaped ip, 1024, remote addr)
```

call_curl(escaped_key,escaped_ip,escaped_auth)

PreAuth RCE in Management Web Interface

- Return value of escapeshellarg() is not checked for X-Real-Ip header
- How can the function fail?
 - Second argument is length of the output buffer
 Max amount of bytes that can be written
- Overlong value: Closing single quote won't be written
- Off-by-One in quoting allows simple command injection in other values:
 - key=; touch /tmp/ernw_poc;'

Demo

POST

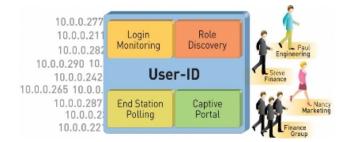
/api/aa?client=wget&key=%3b%20%74%6f%75%63%68%20%2f%74%6d %70%2f%65%72%6e%77%5f%70%6f%63%3b%27 HTTP/1.1

Host: 192.168.75.166

X-Real-Ip:

Content-Type: application/x-www-form-urlencoded Content-Length: 1

а



First Result

- Unauthenticated command execution against management web interface
 - 100% stable
- ¬ Hardened environments → Management interface won't be accessible for attackers
- Other attack surface is more interesting

User-ID

- Core selling point of Palo Alto devices
- Implement firewall policies based on user accounts (not IP addresses)
- Example:
 - User bob@corp can connect to DC on port 3389

https://www.paloaltonetworks.com

User-ID

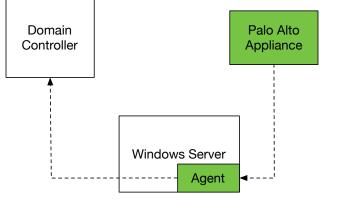
 Firewall needs to have mapping between IP addresses and active user account.

- Five main ways:

- Server Monitoring (agentless)
- Server Monitoring (agent)
- Captive Portal
- Client Probing
- Global Protect

User-ID: Server Monitoring

- Assumption: AD based environment


- Agentless Monitoring

- Create dedicated user for accessing domain controller (server operator permissions)
- Store credentials on firewall
- Firewall connects do DC / Exchange Server and reads event logs

➔ Simple but stores credentials on device

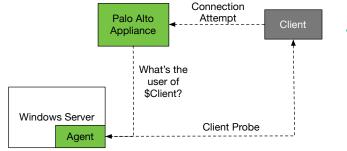
User-ID: Server Monitoring

Install User-ID Agent on Windows Server

- Does not need to be the DC
- Configure domain account for agent.
- Agent connects to DC, Firewall connects to agent.
- For accepting connections from firewall User-ID Agent listens on TCP port 5007

User-ID: Captive Portal

User Identification Portal	User	r Identific	ation F	ortal
----------------------------	------	-------------	---------	-------


The resource you are trying to access requires proper user identification prior to access. Please enter your credentials.

Name Password	Login	

- Addition/Alternative to server monitoring
- Hijack port 80 (+443) connections and force manual login
- Captive Portal is implemented using Appweb3 + PHP Extensions
 - Significant attack surface

User-ID: Client Probing

- Event Logs might be old, captive portal not feasible for non HTTP traffic.
- Idea: Just ask the client what user is logged in!
 - ... I did not say good idea
- Enabled by default
- Netbios and/or WMI

R7-2014-16: Palo Alto Networks User-ID Credential Exposure

Blog-Eintrag wurde erstellt von hdmoore D in 14.10.2014

🖒 Gefällt mir • 0 🛛 💭 Kommentar • 0

Project Sonar tends to identify unexpected issues, especially with regards to network security products. In July of this year, we began to notice a flood of incoming SMB connections every time we launched the VXWorks WDBRPC scan. To diagnose the issue, we ran the Metasploit SMB Capture P module on one of our scanning nodes and collected the results. After reviewing the data, we realized a common trend in the usernames of the incoming SMB connections.

After some digging, we traced this back to the Palo Alto Networks (PAN) User-ID I feature, an optional component provided by PAN that "gives network administrators granular controls over what various users are allowed to do when filtered by a Palo Alto Networks Next-Generation Firewall". We contacted PAN and they confirmed that some of their customers must have misconfigured User-ID to enable the feature on external/untrusted zones. In summary, every time we triggered a PAN filter on a misconfigured appliance, our scanning node would receive an inbound authentication attempt by User-ID. This issue is not a vulnerability in the typical sense, but we felt that the impact was significant enough that it required notification and public disclosure.

Demo

GlobalProtect

 VPN solution with support for mobile devices

- SSL-VPN/IPsec
- Desktop Clients and Mobile Apps for popular platforms
- Can also be used internally
 - GlobalProtect authentication maps to Client-ID

GlobalProtect

- SSL-VPN and configuration APIs implemented on top of web interface
 - Appweb3 + PHP again ☺
- Very interesting attack surface
 - Remote (from the internet)
 - Some functionality does not require authentication

GlobalProtect: DoS

POST /global-protect/login.esp HTTP/1.1
Host: 192.168.2.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 59487

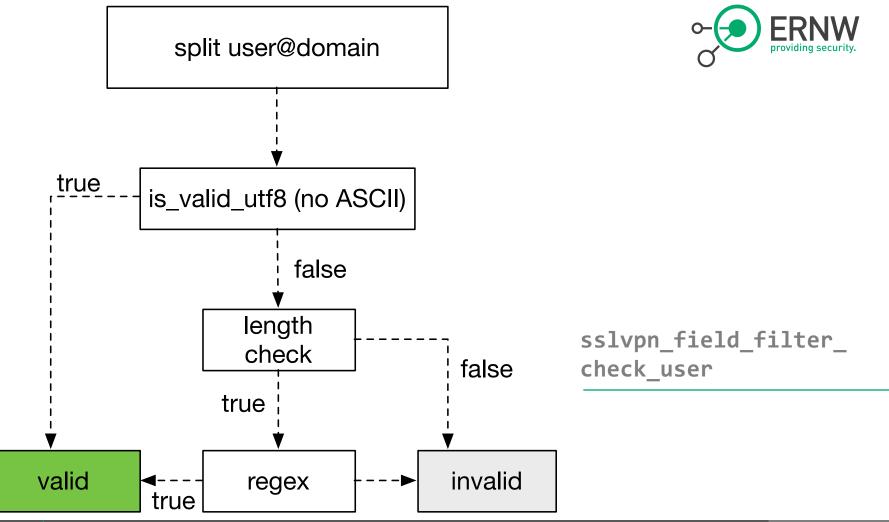
GlobalProtect: DoS

- Password is passed to unescapeStringForXml which uses alloca to allocate space from stack.
- \neg Stack size is heavily limited $\odot \rightarrow$ Invalid memory access
- (Might be exploitable for more than DoS depending on the target system)

GlobalProtect: Static encryption keys

- GlobalProtect cookies are encrypted.
- Uses (shuffled) device master key as AES key
- By default: p1a2l3o4a5l6t7o8
 - No change enforced during installation
- Attack can create arbitrary faked cookies S
 - Allows for "interesting" attacks against VPN authentication
- Not considered a security vulnerability by Palo Alto
- Recommendation: Change Device Master Key!
 - From us and admin guide!

GlobalProtect: Getting Code Execution


- Goal: Remote unauthenticated compromise of the device
- Unauthenticated attack surface is limited
 - Most code directly calls into login functions
- Code uses escapeStringForXml function to escape username before sending XML encoded IPC message to authentication daemon.

GlobalProtect: escapeStringForXml

- Function does not perform any length checks
- Destination is stack allocated buffer of size 1024
- To ensure that no overlong usernames are passed to function, sslvpn_field_filter_check_user is used.

<u>16.03</u>.16

sslvpn_field_filter_check_user

- If username/domain consists only of UTF-8 characters (and no ASCII) length check is skipped.
- Trivial DoS: Login with a username consisting of 10000 Ä
- RCE possible?

The Way To Code Execution

- Destination buffer is fixed size stack buffer
 - No stack canaries

- Executable without PIE

- Very small helper binary that calls into main appweb3 library
- Libraries use ASLR
- MIPS64
 - Big Endian (no partial overwrites)
 - eXecute Inhibit
 - pointers and address Space are 32bit
 - \$ra register (return address) is 64bit wide!

The Way To Code Execution

- First problem: Username can not contain any ASCII characters
- Can be partially bypassed by splitting username into user@domain
 - user is utf-8 string of arbitrary length
 - domain is alphanumeric ASCII string < 250
- Return Address overwrite?
 - \$ra is 64bit, upper half needs to be zero
 - Big Endian Overwrite + Alphanumeric ASCII == :(

The Way To Code Execution

Pointer to PHP context is stored on stack

- Used before function return for call to php_body_write
- Context has pointers to pointers to function pointer (double indirection)
- Problem: New value for context pointer needs to be alphanumeric
- Solution: Heap Spray

HeapSpray

¬ Appweb3 Heap Spray:

- Stores up to 1MB of arbitrary content until it finds "\r\n\r\n"
- Open many connections and send payload. Keep connections alive by repeatedly sending additional single-bytes

- Reliable allocates payload at:

- 0x31633130 or 1c10 in ASCII

PC Control: php_body_write

php body write:		
1w		0(\$a2)
lui	\$a4,	0x61
addu	\$a4,	\$t9
addiu	\$a4,	(unk_9A7)
1w	\$v1,	(output_)
1w	\$v0,	(output_)
addiu	\$v0,	-1
s11	\$v0,	2
addu	\$a3,	\$v0
1w	\$v1,	0(\$a3)
1w	\$t9,	0(\$v1)
jr	\$t9 -	
nop		

a2 = 0x31633130a3 == 0x31633134\$v1 == 0x3163313C \$t9 == ROP GADGET

\$pc to Code Execution

- Problem: Cavium Octeon+ support non executable memory → Heap spray is not executable
- ROP needed!
- ¬ MIPS64 Rop:
 - Aligned 4byte instructions → No accidental gadgets
- Only object at constant address is appweb3
 - Contains only 10 functions mostly wrapper that directly call into (randomized) shared libraries
- ¬ →No suitable ROP chain to get arbitrary execution of MIPS instructions discovered ☺

\$pc to Code Execution

- But: Creation of arbitrary files possible:

```
1ω.
         $t9, <mark>0</mark>($s1)
                                       maStartLogging:
addiu
         $s0, 1
                                       lui
                                                $t7, 0x1010
         $a0, $s5
move
                                                $t9, maStartLogging ptr
                                       1ω.
         $a1, $s4
move
                                                 $t8, $t7, (maStartLoggin
                                       addiu
       $a2, $s3
move
                                       jr.
                                                 St9
         $t9
jalr
```

- ¬ Control over \$s1 and \$s4 → Call to maStartLogging with arbitrary second argument
- maStartLogging creates a file at the path stored in the second argument

File Creation to Code Execution

- Needs another (local) bug 🙂
- Includes a local privilege escalation to root.

Final Demo

Recommendations

- Isolate management interface

- Very feature rich, hard to secure completely
- Think critically about relying on User-ID for security critical filtering
 - OK for business related policies or in combination with strong authentication (802.1X e.g.)
 - Not recommended for isolation of management interfaces
- Disable Client Probing
- Isolate User-ID Agent
- Change Master Password
- Keep System updated

Summary

- ¬ More features → Bigger attack surface → More vulnerabilities
- Very professional handling and response by Palo Alto
- Vulnerabilities are not great but response show right mindset
 Positive about future progress

Thanks for your attention!

fwilhelm@ernw.de

ld fel1x

