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Motivation



What if we had the best team of security researchers .. ?

program + input → security issue?
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.. but

They are expen$ive and we want to discover more
vulnerabilities, using less resources (time/money).

Program Behaviors
We should focus on programs and inputs that could do something
“bad”.
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Overview and Applications

How?

program and

inputs

→ traces → machine

learning

→ program behaviors

Why?

Vulnerability Detection: → extrapolation and prediction of vulnerable inputs.

Seed selection: → reduction of the set of inputs to “cover” all the

program behaviors.
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Programs, traces and behaviors



Let’s start with..

1. A binary program: gifflip:
A program to flip (mirror) GIF file along X or Y
axes, or rotate the GIF file 90 degrees to the left or
to the right.

2. A large number of inputs: hundreds or thousands gif files.
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Graphics Interchange Format

The input space of gifflip can be specified using the following structure:

Extracting this information using the binary and some inputs is a very

challenging task! 6



Input Specification Space

where similar gif structures are close together.
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Input File Space

where similar files are close together.
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Trace Space

where similar traces are close together.

Clusters of traces represent a program behavior
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Trace Space

where similar traces are close together.

Clusters of traces represent a program behavior

9



What are traces anyway?



PIN

0x8048e4b mov [0x809a100], eax S@809a100[4]=0xffffc98a R[eax]=ffffc98a R[ds]=2b
0x8048e50 mov eax, [0x809a100] W[eax]=ffffc98a L@809a100[4]=0xffffc98a R[ds]=2b
0x8048e55 test eax, eax W[eflags]=282 R[eax]=ffffc98a R[eax]=ffffc98a
0x8048e57 jz 0x8048e68 W[eip]=8048e59 R[OF]=0 R[CF]=0 R[ZF]=0 R[SF]=1 R[DF]=0 R[PF]=0

...

• Developed by Intel and used in many projects.
• Every instruction and its operands are recorded.
• Traces are sequences of instructions with all its operands values.
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American Fuzzy Lop

• Developed by Google but only
used in AFL.

• Every jump in a binary is
instrumented to have a label
using afl-gcc/g++ or QEMU.

• Traces are sequences of labels
representing transitions
between basic blocks.

• For instance:
1−3−4−3−4−2

11



VDiscover

ltrace VDiscover

getenv(’XAINPUT’)

strcpy(”, ’input’)

strtok(’input’, ’,’)

getenv(GPtr32)

strcpy(SPtr32,HPtr32)

strtok(HPtr32,GPtr32)

• Every call to the standard C library is captured and augmented with
dynamic information of its arguments using ptrace.

• Traces are sequences of events corresponding to such calls.
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Dynamic processing of values

Remember:
Machine Learning algorithms cannot deals with values like string,
pointers, integers, that why replace them with meaningful labels.
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Traces Representations

Unfortunately..
Traces needs to be normalized since longer traces are likely to
contain more information than short ones.

• Bag of words: a trace is represented as the bag (multiset) of
its events, disregarding grammar and even event order but
keeping multiplicity.

• Subtraces of maximum length: a trace is represented as the
set of subtraces sampled from the original (long) trace.
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For instance

Remember:
A trace and its representation can be completely different things.
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Visual Explorations of Trace Space



Inputs and programs traced

• Parsing of simple regex expressions (pcre).
• Detection of file types using file (libmagic).
• Display of information of PNG files from pnginfo (libpng 1.2)
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regex (pcre) - AFL - BOW
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regex (pcre) - AFL - BOW
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file (libmagic) - VD - BOW
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png (libpng12) - VD - BOW
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Vulnerability Prediction



Overview

Vulnerability 
Detection 
Procedure 

testcase output 

dataset 

✓|✗ 
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Key Principles of VDiscover

1. No source-code required: Our features are extracted using
static and dynamic analysis for binaries programs, allowing our
technique to be used in proprietary operating systems.

2. Automation: No human intervention is need to select
features to predict, we focused only on feature sets that can
be extracted and selected automatically, given a large enough
dataset.

3. Scalability: Since we want to focus on scalable techniques,
we only use lightweight static and dynamic analysis. Costly
operations like instruction per instruction reasoning are
avoided by design.
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A harmless crash?

xa is a small cross-assembler for the 65xx series of 8-bit processors
(i.e. Commodore 64). We can easily crash it:

$ gdb --args env -i /usr/bin/xa ’\bo@e\0’ ’@o’ ’-o’
...
Program received signal SIGSEGV, Segmentation fault.
(gdb) x/i
$eip => 0x8049788: movzbl (%ecx),%eax
(gdb) info registers
eax 0x0 0
ecx 0x0 0

...

Question:
It is just a NULL pointer dereference, should we spend our
resources trying to fuzz this test case?
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Smashing the stack..

$ gdb --args env -i /usr/bin/xa ’\bo@e\0’ ’@o’ ’AAAA...AAAA-o’

Copyright (C) 1989-2009 Andre Fachat, Jolse Maginnis, David Weinehall
o@e:line 1: 1000:Syntax error
and Cameron Kaiser.
o@e:line 2: 1000:Syntax error
Couldn’t open source file ’@o’!
o@e:line 3: 1000:Syntax error
Couldn’t open source file ’o@’!
*** buffer overflow detected ***: /usr/bin/xa terminated

...

vulnerability detection procedure
We used a simple fuzzer producing 10,000 mutation for each test case.
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Debian bug reports from Mayhem

• A total of 1039 bugs in 496 packages.
• Every bug is packed with a crash report and the required inputs to

reproduce it.
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For instance

vulnerability detection procedure
Around 8% was found vulnerable to interesting memory corruptions.
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Model training/inference
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Training and Testing
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Prediction accuracy (best predictor)

Flagged Not Flagged
Flagged 55% 17%

Not Flagged 45% 83%

These results are obtained using Random Forest (scikit-learn) in 1-3 grams

representation.

Not flagged cases are slower, because the fuzzer will not find

vulnerabilities.
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Seed Selection for fuzzing [WIP]



Overview

• Seed selection in mutational fuzzing for a program P:
1. Collect a very large number of input files (seeds).
2. Select a subset of seeds according to some criteria.
3. Start fuzzing with selected seeds checking if P fails.

Observation:
Seed selection should avoid redundancy in the initial selection.
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Collecting seeds

... conceptdraw.html ichannels.html nanrenwo.html skionline.html

xooit.html confused.html ifc.html naukrinama.html sltrib.html

xpartner.html congtyinanquangcao.html iflscience.html naunet.html

smartertravel.html xxl-sale.html contracostatimes.html igri-2012.html

nbcsandiego.html smartsms.html xxxvideoo.html cookingforgirlz.html

ihc.html nbnews.html smartwebads.html yanstat.html cooltext.html ...

• HTML and CSS files obtained randomly sampling from the first 10k most
visited pages (Alexa)

• Files are randomly cut in fragments of certain max sizes (128b, 1k)

• All kinds of languages, encoding and types of websites were retrieved!
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Targets

• libxml2 (2.7.2): “xmllint –html @@”
• w3m (0.5.3): “w3m -dump -T text/html @@”
• gumbo-parser (0.9.0): “clean_text @@”
• html2text (1.3.2a): “html2text @@”
• htmlcxx (0.85): “htmlcxx @@”
• htmldoc (1.8.27): “htmldoc @@”
• html-xml-utils (6.5): “hxnormalize @@”
• tidy (20091223cvs): “tidy @@”

All these programs were recompiled using ASAN in order to detect
invalid memory reads/writes.
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Fuzzing time!

General settings:

• AFL 1.94b was used instrumenting the target programs
(recompiled using afl-gcc/g++).

• For each experiment, we fuzzed at least 48hs in a dedicated
core using “quick and dirty” mode (-d).

Selecting seeds:

• AFL includes its own seed selection (called corpus
minimization) based on afl-traces and implemented in
afl-cmin.

• VDiscover includes a pattern based seed selection algorithm.
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From traces to vectors

trace extraction
$ vd -i seeds -o program.traces -c “./program @@”

⇓
complete trace

... read(Num32B8,HPtr32,Num32B24) free(HPtr32) calloc(Num32B8,Num32B24) ...

⇓
fixed size subtrace

read(Num32B8,HPtr32,Num32B24) free(HPtr32) calloc(Num32B8,Num32B24)

⇓
fixed size real vector

0.12 0.31 0.06 0.91 0.42
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libxml2 traces and results
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libxml2 traces and results

Paths explored using AFL
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libxml2 traces and results

Crashes discovered using AFL
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libxml2 traces and results

Unique crashes discovered using AFL
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Give me a break!
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Workshop Time!



Overview

1. Installing VDiscover.
2. Creating test cases and extracting traces.
3. Trace visualization and seed selection.
4. Training and predicting with ZZUF dataset.
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Installing VDiscover

Make sure you install a recent version, not the ancient version from
the Ubuntu repositories (you can download packages here)

1. Setup a VM:
v ag r a n t i n i t ubuntu / t r u s t y 3 2
v ag r a n t up −−p r o v i d e r v i r t u a l b o x
v ag r a n t s sh −− −X

2. Take some minutes to update and install basic stuff (git,
python-setuptools, python-matplotlib, python-scipy ..)
g i t c l o n e h t t p s : // g i t h u b . com/CIFASIS/ v d i s c o v e r −workshop
g i t c l o n e h t t p s : // g i t h u b . com/CIFASIS/ VDiscove r
cd VDiscove r
. / s e tup . py i n s t a l l −−u s e r

(don’t forget to append “PATH=$PATH:~/.local/bin” to your .bashrc)
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VDiscover

• Open source (GPL3) and available here:
http://www.vdiscover.org/

• Written in Python 2:
• python-ptrace
• scikit-learn (and dependencies)

• Composed by:
• tcreator: test case creation
• fextractor: feature extraction
• vpredictor: trainer and predictor
• vd: a high level script to save time extracting data

• Trace should be collected in x86 (because i’m lazy!)
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Setting up a test case

$ printf ’<b>Hello!’ > test.html

$ tcreator --name test-html --cmd "/usr/bin/html2text

file:$(pwd)/test.html" out

Workshop Time!
Experiment adding and removing arguments and files to check how
test cases are created.
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Collecting my first trace (1)

$ fextractor --dynamic out/test-html/ > trace1.csv
$ cat trace1.csv

out/test-html/ strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 ..

Workshop Time!
Take a few minutes to extract traces from other programs and how
to include/exclude events from different modules
(–inc-mods/–ign-mods)
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Collecting my first trace (2)

$ printf ’<baaa>Bye!’ > test.html
$ fextractor --dynamic out/test-html/ > trace2.csv
$ cat trace2.csv

out/test-html/ strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 strcmp:0=GxPtr32

strcmp:1=GxPtr32 strcmp:0=GxPtr32 strcmp:1=GxPtr32

strcmp:0=GxPtr32 strcmp:1=GxPtr32 ..

It looks exactly the same!!
.. but in fact, they are not. Later, we are going to show how to
easily visualize traces..
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Visualizing test cases

• Collecting data:
$ tar -xf bmpsuite-2.4.tar.gz

$ vd -m netpbm -i bmps "/usr/bin/bmptopnm @@" -o

bmptopnm-traces.csv
• Clustering using bag of words and display:

$ vpredictor --cluster-bow --dynamic bmptopnm-traces.csv

• After the clustering, a file (bmptopnm-traces.csv.clusters) will be written.

Exercise:
Using the source code of bmptopnm, try to understand why test cases are
clusterized like this.
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Seed Selection

$ tseeder bmptopnm-traces.csv.clusters seeds
Copying seeds..
bmps/badbitcount.bmp
bmps/pal4gs.bmp
bmps/rgba32-61754.bmp
bmps/pal4.bmp
bmps/shortfile.bmp

bmps/baddens2.bmp

Question
You can adjust how many test cases per cluster are selected using -n.
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ZZUF dataset (1)

A detailed explanation of this dataset is available here:
http://www.vdiscover.org/OS-fuzzing.html
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ZZUF dataset (2)

• cmds.csv.gz: 64k command-line to fuzz
• traces.csv.gz: sampled and balanced traces ready to be
trained and tested

• zzuf.csv.gz: output from zzuf after fuzzing

To split the data in train and test sets:

$ ./split.py dataset/traces.csv.gz 42
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Training and testing a bug predictor

• Training:
$ vpredictor --dynamic --train-rf data/42/train.csv --out-file

model.pklz
• Testing:

$ vpredictor --test --dynamic --model model.pklz data/42/test.csv
--out-file predicted.out
...
Accuracy per class: 0.72 0.78

Average accuracy: 0.75
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