Kernel Exploit Sample Hunting
and Mining

HITBAMS2016
Amsterdam, Netherland

g
F:=RTINET &

F-Secure.




Introduction

= Wayne Low

= Security Researcher @
Fortinet

= Malware research particularly
anti-HIPS techniques,
providing countermeasure

= Focusing on 0-day exploit
sample discovery

= Extremely interest into

Windows exploit/vulnerability
research

= Contact: wlow (at)
fortinet.com

= Twitter: x9090

Broderick Aquilino
Senior Threat Analyst @
F-Secure Labs

Currently working for malware
protection team

Contact: broderick.aquilino
(at) f-secure.com

Twitter: BrodAquilino



Agenda

Mining
= EOPvs UAC

= Abused by malware authors
= Differences between them

= What is WWW primitive

= Result of mining kernel exploit sample shows classic WWW primitive
kernel exploitation, eg: CVE-2013-3660 by Tavis Ormandy

= Kernel exploit sample mining

= Case study of malware families with EOP
= Dridex/Dyre
= Carberp/Rovnix
= Fvotob
= Discpy

Hunting EoP anomalies



EOP vs UAC

Elevation of Privilege

Less reliable
Less stable
No limitation
Full system

ilege

@{&

(Systerrq rity level)

17.452K
2,188 K

27,820 K Medium
5.412 K Medium
9176K Medlum
940 K S ystem

1 908 K System

User account control

= More reliable
= More stable
= Has limitation

= Administrator privilege
(ngh mtegrlty Ievel)

nt Control Settings o IEN
n

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

P ame:  Windows Command Prox
ﬁ dp blisher Mncrosofthdows

@ cmd exe | 233 1588 K

2,168 K High




EOP + UAC

Is current
user an
Admin

account?

Is
Medium/Low
token
integrity
level?

EoP exploit

Execute
payload

UAC bypass

Is
successful?




What is WWW primitive

= Commonly used vector. Simple and straight forward

= Store (write) a specific value (what) to a specific kernel pointer address
(where), eg: HalDispatchTable

= Traditional kernel exploit uses 3 steps:
1. Prepares a user mode buffer to store the shellcode

2. Uses write-what-where approach to overwrite HalDispatchTable
+sizeof(void*) with shellcode address

3. Redirects code execution to the prepared shellcode using
NtQueryintervalProfile

Shellcode

Exploit with WWW primitive

ntdll!NtQuerylntervalProfile




What is WWW primitive

= Limitation:
= Counter measures from Intel®

= Supervisor Mode Execution Prevention (SMEP)
= Supervisor Mode Access Prevention (SMAP)

"= Many workarounds:
= N3phos’s exploit in CVE-2015-0058
= Alex lonescu’s kernel heap feng shui
= WWW primitive is prominent, but some
exceptions ®
= CVE-2014-4113
= CVE-2015-1701



Kernel EoP exploit sample hunting

= NtQueryintervalProfile & HalDispatchTable still
favorable for exploit writers ©

= Some success stories
= Discovery of Dridex’s CVE-2015-0057 exploit
= Other malware families leveraging public known EOP
exploits
" How to do that?

= Windows native API calls in the process of achieving EOP
= String search in static binary
= String search in dynamic process memory

* No Windows native API function name
= Kernel exploit behavioral detection methods



Kernel EoP exploit sample hunting —-
WWW primitive

= Rule #1 - Generic EoP leveraging WWW
= VT yara rule for static binary string
= Yara rule for dynamic analysis system
= NtQuerylntervalProfile not used by user-mode application
" Yara rule in VT with low FP rate

{

meta:
description = "Typical APIs used in Write-What-Where Windows kernel expleoitation”
strings:

I $NtQueryIntervalProfile = "NtQueryIntervalPrcfile"'nccase

$ZwQueryIntervalPreofile = "ZwQueryIntervalPrefile" nccase

I $HalDispatchTable = "HalDispatchIable"Inccase

condition:

wQueryIntervalProfile) and $HalDispatchTable and




Kernel EoP exploit sample hunting —-
Token Stealing

Remember the exceptional cases without using WWW primitive?
Upon successfully exploiting kernel vulnerability, next thing exploit
will do is:
= Elevate itself to system privilege through token stealing
= Let’s take advantage of token stealing payload operation!
Steps:

= Get the EPROCESS structure of the System (process id=4) and
subsequently obtains its corresponding access token address.

= Get the EPROCESS structure of the exploit process and replace its
access token address with the System’s access token.

= As a result the exploit process possesses the same access token as the
System which has the highest privilege on Windows environment.

Used to be in ASM code... but it is not portable to other versions of
Windows

Modern exploits use documented Windows kernel API



Kernel EoP exploit sample hunting -

Token Stealing (continued)

= Examples of privilege elevation payload
routine taken from modern exploits

" it becomes:

= Cleaner and portable

int __ stdcall elevate_system privilege() int elevate_privilege()
{
int result:; PACCESS_TOKEN currentToken;
PEPRCOCESS currentEproc:; PACCESS_TOKEN SystemToken;
PEPRCCESS systemEproc; PEPROCESS currentEproc;

gtrPsLookuEProcessByProcessId(g_dwCurrentPid, &currentEproc) ; g boolExploited = 1;

ptrPsLookupProcessByProcesslid(g_dwSystemPid, &systemEproc): * (_DWORD *) (g_pHalDispatchTable + 4) = g _origNtQueryIntervalProfile;
result = g_dwOffsetEprocToken; if ( !'ptrPsLookupProcessByProcessId(g_dwCurrentPid, &currentEproc) )
* ( DWORP *) ((char *)cggrentgproc + g dwOffsetEErocIokenl = {

*(_DWORD *) ((char *)systemEproc + g=dw0ffsetEprocToken); currentToken = pfnPsReferencePrimaryToken (currentEproc) ;

reéturn result; SystemToken = pfnPsReferencePrimaryToken (* (_DWORD *)g_PsInitialSystemProcess);

replace_token(currentEoken, Systemﬁoken);

}

return ;



Kernel EoP exploit sample hunting -
Token Stealing (continued)

= Rule #2

= Detect token stealing operation using
PsLookupProcessByProcessld and NtQuerySystemInformation

= Specific to W|n32k kernel epr0|t

rule generic_um win32k_kernel exploi
{
meta:

descripticon = "Typical APIs used in user-mode expleit to leverage win3Zk kernel
mode vulnerability”

strings:
$PsLockupProcessByProcId = "PsLeokupProcessByProcessId” fjocase
_—
erySystemInformation = erySystemInformation” Rocase
I $NtQuerySystemInt t "NtQuerySystemInf t " l
$ZwQuerySystemInformation = "ZwQuerySystemInformation" ncocase
condition:
(sNtQuerySystemInformation or $ZwQuerySystemlr rma d
and (pe.impo "user3Z.dll" I
i x 7
tags contains "peexe" and
not tags ceontains "native"



Kernel EoP exploit sample hunting -
Token Stealing (continued)
= Rule #3

= Detect token stealing operation using
PsReferencePrimaryToken

= Not specific to Win32k kernel exploit

rule generic_um kernel explecitation

{

meta:
description = "Typical APIs used in user-mode exploit to leverage kernel mode
vulnerability"
strings:
$NtQuerySystemInformation = "NtQuerySystemInformation” |nccase
$ZwQuerySystemInformation = "ZwQuerySystemInformation"™ nocase
I $PsLockupProcessByProcld = "PchckupPrccessBszccessId"Inccase
$PsReferencePrimaryToken = "PsReferencePrimaryToken" |[nocase
conditien:

($NtQuerySystemInformation or $ZwQuerySystemInformation) and

($PsLookupProcessByProcld or $PsReferencePrimaryToken) and

tags contains "peexe" and ?
not tags contains "native" [ ]




Case study - Dridex

= Discovered by Rule #1
=  First exploit CVE-2015-0057
= Exploited 3 months after MS patched in Feb 2015
= No public exploit code available that time
= Disappeared after July 2015
=  Modular architecture
= EOP exploit module downloadable from C&C as mod5

5
9

5] Count of sections 4 | Machin

%) Symhol table 0ABRAAN0LOABABAAA ] ed Jul 22 21:81:15 2015
9 Size of optional header E@ Magic

%) Linker version 08 version
9 Image version

.9 Entry point

.g Size of init data
9

9

9

9

a

9

Subsystem version
Size of code

Size of uninit data
Size of header

Base of data

Size of image
Base of code
Image base Subsystem GU
Section alignment 5] 00 File alignment ARRAA200
Stack #0100000,/00001008 | Heap 001 00000,/60001 000
Checksum 00000008 | Number of dirs 16

.8084

-09403060: SCRO
-09403070: LLBAR delm
-008403080: e ntoskrnl.exe
.08403090:

.B804030A0:

.894030B0A:

.8940308C0:

.0894030D04:

-004030ER: pi y
-0084030FQ: HalDispatchTahle
.00403100: NtQuerylnter
.89403110: valProfile S T
.89403120: 3

.89403130:

-09403140:

-09403150: findme2 find
.A08403160: cltems

=  UAC bypass module downloadable from C&C as mod4
= Exploiting known and patched UAC vulnerability
= Eg: AppCompat whitelisting



Case study - Discpy

= Discovered by Rule #1
= |nteresting post kernel exploit payload
= No regular token stealing
= Not a new technique but interesting idea
= Do we really need to elevate privileges for the exploit process?

= QOther options:

= Nullify DACL of Security Descriptor for a privileged Windows process, “Easy Local
Windows Kernel Exploitation” by Cesar Cerrudo

= How about inject code to remote process from kernel mode?
= No modification to kernel data structure
= Kernel exploit enables code execution under kernel mode context
= Execute APC injection routine from kernel mode
= APC injection routine traverse active process list to find target process (eg: svchost.exe)
® |nject APC thread to svchost.exe to run main payload
= More stealthy
= Bypass most of the HIPS solutions by antimalware vendors
= Update: 30 April 2016 Trend Micro discovered similar post kernel exploit
payload used in Locky



Case study - Discpy

= Discpy.exe exploits
CVE-2013-3660

= Transfer control to
kernel mode

Kernel

mode

Allocate kernel buffer via
ExAllcoatePool

Prepares APC injector routine in
kernel buffer

Transfer code execution to kernel
buffer

Enumerate and find active
svchost.exe and inject APC thread to
targeted thread

Trigger APC thread via
KelnsertQueueApc that will perform
final downloader/dropper routine



Hunting EoP Anomalies

= Look for unauthorized elevated processes
= Non-system services having system integrity level

" Processes having system integrity level with non-
system Integrity level parent process

" Processes with administrative windows privileges
but < high integrity level

" Processes Accessing Objects with Higher Integrity
Level



Conclusion

= Usually means game over when reach Kernel
mode

= Does not mean we have to make it easy
= Actively hunt for them



