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360 Marvel Team

Established in May 2015, the first professional could 

computing and virtualization security team in China. 

Focusing on attack  and defense techniques in 

virtualization system. 

● fuzzing framework

● guest machine escape technology

● Hypervisor risk defense technology
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Agenda

• Virtualization System Attack Surface

• The fuzzing framework

• Case study
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Virtualization System Attack Surface
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Cloud Computing
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Hypervisor

Types

Xen Kvm Vmware

function

quantizing 
distribution

flexible 

scheduling



7

Distinctions

OS

Physical Devices

Guest OS

Hardware
emulator

Hypervisor

Physical Devices

Guest OS

Hardware
emulator

Normal Server Virtualization Server
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Attacking Processes in cloud computing

1. Enter VM via web or other devices

2. Exploit virtualization system vulnerabilities to escape VM

3. lateral movements to others VMs on host

4. Access to host network 
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Operation Principles of device emulators
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The attack surface

• Hardware virtualization components’ diversity

Qemu： 30+    

Vmware：20+

• Bridge between inside-outside

VM os -> device emulators -> Host os

• Related Vulnerabilities result big dangers
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• Hardware virtualization focus on lower 

layers

• Testing data totally different

Compare to traditional targets

System Kernel

Hypervisor
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Vulnerabilities found by us
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Fuzzing Framework
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Basic intro

Attack surface ： hardware virtual components

Environment ： qemu ， vmware

Testing results ： more than 25 vulnerabilities 

Challenges ： lower layers hard to predict；
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1. Analyze data which flowed to components

2. Change flowed-in data’s contents and timing

3. Recording all of tiny abnormal activities

4. Analyze abnormal activities, find reasons

5. optimize fuzz    framework

Methods for testing hardware virtual components
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Other factors of fuzz framework

1.Flexibility (other OS)

• vm in Linux

• coding in C and Python

2. Deeply understand VM system

• language for coding

• development environment

• coding style
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os

Control Center

Fuzz framework structure

HostHost

os os os osos

Client :

Emulate analysis

System hook

Case load

Data communicate

Log

Monitor :

Hypervisor instrument

Data communicate

Log

Server :

Case database

Data communicate

Framework log database

Monitor log analysis

Log



os
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os

Control Center

Fuzz framework working flow

HostHost

os os os os

Step 1 : get device emulator info

Step 2 : get test template from server

Step 3 : launch test

Step 4 : monitor hypervisor

Step 5 : get log from client & monitor

Step 6 : analyze log

Step 7 : analyze crash and exception

Step 8 : optimize fuzzing framework
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Get target components info
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• Device access ports

• Device deal with structures used by data.

• Device data processing

Testing data



• User space: generate testing dat, 

send request to client kernel

• Kernel space: apply for memory, 

fill memory, send info to ports

• Device emulator：testing data 

flow inside，trigger exceptions
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Testing data attacks

user space

Kernel space

Device controller
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Monitor

VM management

• Snapshot

• Reboot

• VM device editing

Dynamic debugging

• Debugging Mode on Start

• Load Debugging Plugin

VM processing log

• User space 

• Kernel space
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Exceptions occur in device emulator

• VM os crash

• Hypervisor crash

• Invisible results
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Advanced monitoring skills

• Dynamic 

• Static 
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Optimize fuzz framework by using log data

• Client log

Decrease invalid combinations

• Monitor log

Promote coverage

• Server log
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Limitation & Future

• Permission limitation

• More kinds of virtualization systems：

Hyper-V；VMWARE

• More attack surfaces：

hypercall；virtio；guest machine client

• About open source project
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Case Study
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•Initialization
Port Allocation ， Address Mapping

Device Status Setting, Resource Allocation

•Data Transfer
'Write Command' to device TDT register

process of descriptor

3 types descriptor ： context ， data ， legacy

data xfer

set status ， wait for next instruction

•Processing Details
Circular Memory

TSO ： tcp segmentation/flow control.

Principle of e1000 Network Device
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• Qemu e1000 Network Device

• Vmware e1000 Network Device

E1000 vulnerability analysis
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Pcnet network card emulator working processes

Io port write

Control and 

Status 

Registers 

write

Receive Send

Virtual   Network   Interface
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• Qemu pcnet Network Device

Pcnet vulnerability analysis
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Summary

Stay tuned for more achievements by 

360 Marvel Team
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Q & A

Email：tangqinghao@360.cn

QQ：702108451


