
1

Speaker: Qinghao Tang

Title：360 Marvel Team Leader

Virtualization System

Vulnerability Discovery

Framework

2

360 Marvel Team

Established in May 2015, the first professional could

computing and virtualization security team in China.

Focusing on attack and defense techniques in

virtualization system.

● fuzzing framework

● guest machine escape technology

● Hypervisor risk defense technology

3

Agenda

• Virtualization System Attack Surface

• The fuzzing framework

• Case study

4

Virtualization System Attack Surface

5

Cloud Computing

6

Hypervisor

Types

Xen Kvm Vmware

function

quantizing
distribution

flexible

scheduling

7

Distinctions

OS

Physical Devices

Guest OS

Hardware
emulator

Hypervisor

Physical Devices

Guest OS

Hardware
emulator

Normal Server Virtualization Server

8

Attacking Processes in cloud computing

1. Enter VM via web or other devices

2. Exploit virtualization system vulnerabilities to escape VM

3. lateral movements to others VMs on host

4. Access to host network

9

Operation Principles of device emulators

10

The attack surface

• Hardware virtualization components’ diversity

Qemu： 30+

Vmware：20+

• Bridge between inside-outside

VM os -> device emulators -> Host os

• Related Vulnerabilities result big dangers

11

• Hardware virtualization focus on lower

layers

• Testing data totally different

Compare to traditional targets

System Kernel

Hypervisor

12

Vulnerabilities found by us

13

Fuzzing Framework

14

Basic intro

Attack surface ： hardware virtual components

Environment ： qemu ， vmware

Testing results ： more than 25 vulnerabilities

Challenges ： lower layers hard to predict；

15

1. Analyze data which flowed to components

2. Change flowed-in data’s contents and timing

3. Recording all of tiny abnormal activities

4. Analyze abnormal activities, find reasons

5. optimize fuzz framework

Methods for testing hardware virtual components

16

Other factors of fuzz framework

1.Flexibility (other OS)

• vm in Linux

• coding in C and Python

2. Deeply understand VM system

• language for coding

• development environment

• coding style

17

os

Control Center

Fuzz framework structure

HostHost

os os os osos

Client :

Emulate analysis

System hook

Case load

Data communicate

Log

Monitor :

Hypervisor instrument

Data communicate

Log

Server :

Case database

Data communicate

Framework log database

Monitor log analysis

Log

os

18

os

Control Center

Fuzz framework working flow

HostHost

os os os os

Step 1 : get device emulator info

Step 2 : get test template from server

Step 3 : launch test

Step 4 : monitor hypervisor

Step 5 : get log from client & monitor

Step 6 : analyze log

Step 7 : analyze crash and exception

Step 8 : optimize fuzzing framework

19

Get target components info

20

• Device access ports

• Device deal with structures used by data.

• Device data processing

Testing data

• User space: generate testing dat,

send request to client kernel

• Kernel space: apply for memory,

fill memory, send info to ports

• Device emulator：testing data

flow inside，trigger exceptions

21

Testing data attacks

user space

Kernel space

Device controller

22

Monitor

VM management

• Snapshot

• Reboot

• VM device editing

Dynamic debugging

• Debugging Mode on Start

• Load Debugging Plugin

VM processing log

• User space

• Kernel space

23

Exceptions occur in device emulator

• VM os crash

• Hypervisor crash

• Invisible results

24

Advanced monitoring skills

• Dynamic

• Static

25

Optimize fuzz framework by using log data

• Client log

Decrease invalid combinations

• Monitor log

Promote coverage

• Server log

26

Limitation & Future

• Permission limitation

• More kinds of virtualization systems：

Hyper-V；VMWARE

• More attack surfaces：

hypercall；virtio；guest machine client

• About open source project

27

Case Study

28

•Initialization
Port Allocation ， Address Mapping

Device Status Setting, Resource Allocation

•Data Transfer
'Write Command' to device TDT register

process of descriptor

3 types descriptor ： context ， data ， legacy

data xfer

set status ， wait for next instruction

•Processing Details
Circular Memory

TSO ： tcp segmentation/flow control.

Principle of e1000 Network Device

29

• Qemu e1000 Network Device

• Vmware e1000 Network Device

E1000 vulnerability analysis

30

Pcnet network card emulator working processes

Io port write

Control and

Status

Registers

write

Receive Send

Virtual Network Interface

31

• Qemu pcnet Network Device

Pcnet vulnerability analysis

32

Summary

Stay tuned for more achievements by

360 Marvel Team

33

Q & A

Email：tangqinghao@360.cn

QQ：702108451

