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1 Introduction

Analyzing network traffic is a task that comes up often in the context of threat analysis.
However, with the advent of free SSL/TLS certificates, any attacker can deploy encrypted
channels for the purpose of delivering malware or receiving exfiltrated data. Thus, a need
arises for the analysis of such communications as efficiently and covertly as possible.
Real-world cases involve:

• investigating honeypot traffic: malware, backdoors etc. that have been downloaded
using TLS and planted on machines with (intentionally) weak credentials

• pre-infection: malware delivery from sites (e.g. malvertising)

• post-infection: the communication with the C&C servers.

Having this information is vital for collecting the samples and then carrying out dynamic
analysis on them. However, it is not currently trivial to decapsulate the encrypted traffic
without major and thus noticeable modifications of the target VM.

Current solutions to this issue involve:

• adding a root CA (certificate authority) to the machine and proxying traffic in order
to split the connection and re-sign certificates on-the-fly

• modifying/recompiling crypto libraries to log extra information (a solution deemed
non-portable)

• using mechanisms already present that log such information (such as the SSLKEY-
LOGFILE environment variable present only in browsers relying on libNSS and
boringSSL).

All these methods rely, in the end, on modifications in the guest VM; modifications that
are visible and can be ultimately detected by the malware itself which can then choose to
deactivate itself, leading to False Negatives.

An ingenious approach to this problem is to exfiltrate the key (called Master Secret in TLS
terminology) of a conversation using an out-of-guest solution such as the one described in
”Tappan Zee (North) Bridge: Mining Memory Accesses for Introspection”. The author
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would use PANDA to instrument an emulated machine and set predefined ”tap points”
at various moments of execution and dump relevant memory. Although elegant, the
approach has several drawbacks: both in terms of speed (the machine is emulated, not
virtualized) and in terms of setup; the tap points need to be predefined and will break
if the underlying system goes through a system update (unintended by the analyst) that
targets the crypto libraries where the tap points are set or an explicit modification to the
system files done by the attacker or the malware.

In this paper we first do away with the performance overhead of the previous approach by
showing that the process can be replicated using modern memory introspection techniques
similar to the ones employed in DRAKVUF. We then present a novel technique that not
only works for virtualized machines with a minimal overhead but is actually OS-agnostic
and crypto-library-agnostic: no assumptions about these are currently required to obtain
the TLS keys. We achieve this performance by using some key X86 architecture features
and by operating only under the assumption that the TLS communication that is to be
decrypted respects the appropriate RFCs, an assumption which obviously holds if the
communication is to be working.

Instead of pausing the machine (which would introduce noticeable latency) and doing
a full memory dump, we develop a memory diffing technique using primitives already
present in hypervisor technologies. Then, although this allows reducing the dump from
gigabytes to megabytes, the time taken to write this quantity to a storage is still non-
negligible (on the order of a few milliseconds) and thus we show how to further ”disguise”
the process in network latency, without having to pause the machine at all. Finally, we
discuss the issue that the TLS context has multiple parameters: encryption keys, IVs
or nonces, MAC keys and would imply that searching for them in the ”micro memory
dump” takes quadratic or even cubic time. However, we develop techniques for the most
commonly used ciphers that require only linear time.

Because the primitives we require are mainly used in the cloud we then go further and
raise the question of whether the proverbial tables have turned and we ourselves might
be the ones in somebody else’s sandbox being ”dynamically analyzed”.

In the following sections we first describe TLS as presented in the RFCs and pinpoint
the features that allow us to leverage our technique. Afterwards, we employ out-of-VM
breakpoints to exfiltrate TLS keys from known contexts: template VMs, offered by default
by cloud providers. Then, we generalize the approach, making it more robust and allowing
it to work without knowing any details about the underlying VM, useful when an attacker
has full access to the VM, a scenario present in honeypots. As some brute forcing is still
required to identify the correct keys we then assess the time needed and offer optimizations
to usual approaches for the ciphers currently implemented in HTTPS enabled software.
Finally, we provide benchmarks that show perceived latency and scalability.

2 Transport-Layer Security handshake

As described in RFC52461, the client and server need to first negotiate connection pa-
rameters and establish an encrypted channel in order to communicate securely.

1https://tools.ietf.org/html/rfc5246#section-7.3
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Figure 1: TLS handshake; httpd.apache.org/docs/2.4/images/ssl_intro_fig1.gif

This process starts off with an initial Handshake with the client sending a Client Hello
containing (among many others):

• the list of supported cipher suites

• client random

The server responds with a Server Hello deciding further information on the cipher context:

• the chosen cipher suite from the ones enumerated by the client

• server random

• public key for key exchange (in the Server Certificate)

• parameters for key generation

If key exchange is selected, the client will send a 48-byte Premaster Secret encrypted
with RSA. If key generation is selected then the Premaster Secret is mutually agreed
upon using a Diffie-Hellman variant. The Premaster Secret will then be converted to the
Master Secret using a PRF and truncated to 48 bytes as described in RFC52462

This Master Secret will form part of the key block used to derive the key material contain-
ing the encryption keys, MAC keys and additional parameters to be used in the selected
cipher suite according to the algorithm in listing 1.

After the encryption context has been completely established, both parties will send a
Change Cipher Spec message indicating that the next message from the originating end
will be encrypted with the corresponding keys. The handshake ends when both the
client and the server have sent encrypted Client Finished (CF) and Server Finished (SF)
messages.

Given the data flow we can conclude the following:

2https://tools.ietf.org/html/rfc5246#section-8.1
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To generate the key material, compute

key_block = PRF(SecurityParameters.master_secret,

"key expansion",

SecurityParameters.server_random +

SecurityParameters.client_random);

until enough output has been generated. Then, the key_block is

partitioned as follows:

client_write_MAC_key[SecurityParameters.mac_key_length]

server_write_MAC_key[SecurityParameters.mac_key_length]

client_write_key[SecurityParameters.enc_key_length]

server_write_key[SecurityParameters.enc_key_length]

client_write_IV[SecurityParameters.fixed_iv_length]

server_write_IV[SecurityParameters.fixed_iv_length]

Listing 1: excerpt from https://tools.ietf.org/html/rfc5246#section-6.3

• The key material is dependent upon both Client Random and Server Random.

• How the key material is used depends on the chosen cipher suite.

• Thus, the Client Finished and Server Finished messages depend on the key material
being computed and a cipher suite being chosen.

It follows that the encryption keys (along with IV/nonce, MAC keys) will not be present
in memory at the moment immediately before Server Hello reception by the client. We
will come back to this key observation when generalizing our technique to work without
knowledge of the underlying OS.

3 Extracting keys from a template VM

Knowing how the TLS handshake works and having all the information about the virtual
machine (VM) under scrutiny and its address space layout makes it significantly easier
to extract TLS secrets. Most of the memory layout is already known, including processes
that carry out encryption and all the shared libraries. Given just a memory dump, a
simple inspection using the Volatility framework can provide the location of the keys with
moderate effort. However, we would like to do this on the fly, without the need to copy
the whole guest physical memory to storage and then doing post-mortem analysis.

Next we discuss the particular case of a Windows 7 machine with Internet Explorer. The
approach can be adjusted for any Virtual Machine coming from a template, that the
analyst has access to.

Internet Explorer delegates all TLS-related tasks to the Microsoft Schannel security sup-
port provider through the ncrypt.dll library. The key material is in fact generated and
stored in the address space of the lsass.exe process (Local Security Authority Subsystem
Service). To decrypt or encrypt content in the TLS stream, processes go through RPC

4

https://tools.ietf.org/html/rfc5246#section-6.3


and communicate with lsass.exe, making this process a prime candidate for snooping
on TLS Master Secrets.

Obtaining the Master Secrets can be done by using introspection techniques like the ones
employed in DRAKVUF to set out-of-VM breakpoints on the functions that compute the
Master Secret. Since the key material is calculated from this Master Secret and elements
present in the traffic, it suffices to obtain either the Premaster Secret or the Master Secret.

Determining where to set a trap and what memory to dump at the trap event requires
some reverse engineering, however. Using the Microsoft Symbol Server we obtain the
public debugging symbols for ncrypt.dll and determine that the TLS Master Secret is
generated in the function called Tls1ComputeMasterKey disassembled in IDA as presented
in figure 2

Figure 2: ncrypt.dll!Tls1ComputeMasterKey disassembly

Using the RFC22463 it is easier to identify what happens in the assembly code. A relevant
excerpt is present in listing 2

master_secret = PRF(pre_master_secret, "master secret",

ClientHello.random + ServerHello.random)

Listing 2: Excerpt from RFC 2246 illustrating master secret derivation

The Ssl3CombineRandomSeeds concatenates the Client Hello and Server Hello and stores

3http://tools.ietf.org/html/rfc2246#page-47
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the result on the stack. Next, this concatenated string, the ”master secret” fixed string
and the Premaster Secret are fed to the PRF function. This means that if we have the
symbols available to the ncrypt.dll and we can set an out-of-VM breakpoint on the
PRF function, it suffices to know the calling convention and check whether a parameter
is the ”master secret” fixed string. Then we only need to dump the memory pointed to
by the corresponding parameter passed to the PRF function.

However, this solution does not scale: any change in the ncrypt.dll will invalidate the
attack and require reanalysis of the binary for appropriate breakpoints.

4 Generalized technique for arbitrary VMs

4.1 Optimized memory dump

The general case that we would like to solve is when there is no information about the
underlying VM or crypto library used for TLS communication, in which case key exfil-
tration becomes significantly harder. The intuitive way would be to determine when a
target TLS connection is in progress and the keys for the encryption context should be
in memory. As we discussed previously, this should be after both Client/Server Finished
messages have been exchanged and, of course, before the connection has ended.

A naive approach would be to determine such a moment and pause the VM in order to
create a memory dump of the whole guest physical memory (pausing is needed to ensure
that the connection does not end until the memory dump completes; should that happen,
the keys might be overwritten/erased from memory). The problem with this method is its
noticeability: dumping gigabytes of memory to disk does not happen instantly; it depends
on both RAM speed and permanent storage write speed, in this case, the disk write speed
being the bottleneck. A possible optimization would be to copy the VM RAM in another
memory zone in the hypervisor. However, this approach does not scale as browsers usually
issue around 5-10 TLS connections at a time as observed in typical browsing sessions.

The method we propose is to reuse part of the Live Migration mechanisms present in most
hypervisors and in particular we focus on the Xen hypervisor. To achieve Live Migration,
the Xen hypervisor takes the following steps 4

• enable logdirty: a XEN_DOMCTL_SHADOW_OP_ENABLE_LOGDIRTY hypercall is issued so
that the hypervisor starts tracking pages that have been written to starting from
that moment

• send memory live: the guest physical memory is sent on the network and the dirty
pages are iteratively tracked using the XEN_DOMCTL_SHADOW_OP_CLEAN hypercall to
find a moment when the number of dirty pages is below a threshold while transmit-
ting them on the network at each iteration

• suspend and send dirty: this is the last stage of the live migration in which the VM
is finally put on pause, the dirty page set is retrieved and sent to the migration
destination and execution is continued at that endpoint.

4http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=tools/libxc/xc_sr_save.c;h=

7dc3a48ccb170b34f291ccc4e7cc78542be05e2d;hb=HEAD#l614
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Using the log-dirty primitives we can narrow down the needed number of pages for the
memory dump from the whole RAM to only the ones that get modified during the TLS
handshake.

We first show how to track the pages for a single connection and then generalize for
multiple overlapping connections.

4.2 Single connection tracking

As we mentioned before, throughout the lifetime of the TLS connection some key packets
on the network can signal whether the keys are present in memory or not (yet). However,
obtaining these signals passively (using tcpdump or similar) in the hypervisor does not
provide the opportunity to act on this information in time. We need to attach inline
with the network stream and obtain packet information. To this end there are multiple
methods that could be put to use such as:

• netfilter queue

• xen events

• ebtables

For our proof-of-concept we split the process into two components:

• Telescope: a component that attaches to the guest VM from the hypervisor and
processes network packets to and from that VM. According to network events it also
toggles the logdirty mechanism and dumps memory pages for each detected TLS
handshake

• Telesync: a component that processes the memory dumps and produces a wireshark-
compatible output that can be used to decrypt TLS traffic for that specific connec-
tion

The Telescope uses libnetfilter_queue to track packets pertaining to the TLS hand-
shake by applying a few ”dumb” rules to iptables. Each VM has its own netfilter queue
and all TCP packets exchanged with the VM that:

• start with the TLS Handshake Protocol signature bytes are sent to a netfilter queue
(unique per VM)

• start with the TLS Change Cipher Spec Protocol signature bytes are also sent to
the corresponding VM queue

Of course, this approach might produce some False Positives when other protocols ex-
change packets starting with those bytes but these are dealt with later when validating
TLS Record Layers.

When a Server Hello packet is detected to be in transit towards the VM, the context is
updated such that:

• the TLS version is extracted from the packet for later use in Telesync

• the cipher suite chosen by the server is also saved for later use in Telesync
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• the log-dirty mechanism is enabled (as the key can only be present after the client
has received this packet as we have proved)

When a Client Finished packet is detected to originate from the VM, the context is
updated such that:

• a sanity check is put in place to ensure that the corresponding Server Hello has been
captured and logging has been previously enabled

• the VM is put on pause

• the log-dirty mechanism is disabled and the dirty pages are saved to disk

• the VM is unpaused

• the Client Finished encrypted payload is saved for later use.

For the Server Finished packet we only need to save the encrypted payload; the key
material is generated once for both encryption directions such that the keys are already
present in the memory dump saved from the Client Finished packet.

Actually, the VM does not need to be paused at all as we do not need a consistent state
of the whole pages, only the keys, which do not ”move around” in the physical memory
as our experiments have shown. To ensure that the connection does not end before we
have saved the dirty pages to disk, we can keep the packets from the server in the netfilter
queue until the process completes, effectively disguising the process in network latency.

4.3 Multiple connection tracking

The previous section only discusses non-overlapping connections, a simplified scenario
from what happens in real-world usage. To be able to track multiple connections efficiently
we need to solve the following problem: given a logging primitive that returns the current
dirty page set (since the last logging), work out the pages that have been modified between
any two arbitrary events (in our case Server Hello and Client Finished). Example:

Events
Page Index

0 1 2 3 4 5 6

e1 0 1 0 1 1 0 1
e2 1 0 0 1 0 0 1
e3 0 1 1 1 0 0 1
e4 1 0 0 0 1 1 1

Assuming there are 2 connections and thus 2 pairs of Server Hello/Client Finished let’s
first assume that:

• e1 is Server Hello 1

• e2 is Client Finished 1

• e3 is Server Hello 2

• e4 is Client Finished 2

This scenario would correspond to the serial case that we have already discussed: the
only pages that need to be saved are those that have been modified (marked 1) at the
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corresponding Client Finished event (pages 0, 3, 6 for connection 1 and 0, 4, 5, 6 for
connection 2).

Now let’s assume that:

• e1 is Server Hello 1

• e2 is Server Hello 2

• e3 is Client Finished 1

• e4 is Client Finished 2

This is the kind of scenario that we would like to capture correctly. Notice that just
returning the dirty set of pages corresponding to the Client Finished is not enough (for
connection 1 the correct dirty set is 0, 1, 2, 3, 6 as opposed to 1, 2, 3, 6), we will also
need to keep a history of the dirty pages of events in between. To solve this problem
efficiently space-wise first notice that all columns are independent, we only need to solve
the problem for one page and the generalization is trivial.

The problem reduces to the following: given a list of events and their corresponding bit
return the bitwise OR between any event and all subsequent events f(ei, ek). Of course,
if the bit from the last event is 1 the final result will be 1.

Events 0
e1 0
e2 1
e3 0
e4 0
e5 0
e6 1
e7 0
e8 0
e9 0

Notice that f(e1, e9) = 1 because of event 2 and event 6, f(e6, e9) = 0 because the last
modification occurred before event 6. It follows that we are only interested in the last
modification time of a page. Having the start event timestamp and last modification
timestamp we can decide if the last modification occurred after the start event (and thus
the final result is 1) or before the start event (and the result will be 0).

The only thing remaining is to be able to pair events. To this end we keep a global list of
currently active TLS connections with the following data:

• Source IP and port

• Destination IP and port

• Server Hello timestamp

The final and generalized solution is the following:

• Create a global array of timestamps (equal to the number of pages in the guest VM)

• For each Server Hello get the current dirty set and update the timestamps of the
modified pages to the current timestamp.
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• For each Client Finished get the current dirty set and dump the dirty pages. After-
wards, obtain the timestamp of the corresponding Server Hello and iterate over the
timestamp array, dumping any page that has been modified after the Server Hello
event.

4.4 Obtaining the encryption context from memory dumps

Even though we obtained encrypted payloads in each direction (the Client and Server
Finished messages are encrypted) and now we could assume the keys are in plain format
and theoretically try all the keys, it is not trivial to pinpoint which would be correct
ones. A first approach would be to try all consecutive key sz bytes (key sz being the
encryption key size) and apply a simple heuristic such as measuring the entropy of the
decrypted message. Selecting the decrypted message with the least entropy should provide
the correct key but it may also produce False Negatives (the TLS payload itself may be
encrypted or compressed) and would add another layer of complexity to the running time
of the process.

To solve this problem we now describe the internals of the Telesync component. One of
our chosen approaches is to use the TLS message format itself to mount a KPA (Known
Plaintext Attack). In general, Client/Server Finished messages start with the following
pattern:

14 00 00 0c [12 random bytes]

As observed from browser traffic, this pattern might vary in cases where an Encrypted
Extensions message is sent first:

43 00 00 [SZ] [SZ bytes] 14 00 00 0C [12 random bytes]

However, the first ciphertext block cannot always be decrypted efficiently and thus we
discuss each case separately in the following sections regarding the ciphers selected by
current browsers in the real-world.

5 Customized KPA for current ciphers

5.1 Ciphers used in Alexa top 1000

We conducted a survey on the Alexa top 1000 sites to see which symmetric encryption
algorithms are selected in the Server Hello and thus we need to focus our attention on.
Out of the first top 1000 sites, only 70% used TLS/SSL. Running once with an openSSL
client and then with a libNSS based client results in the breakdown illustrated in figure 3
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TLS 1.2/AES-GCM - 72.95 %
TLS > 1.0/AES-CBC - 15.30 %
TLS 1.0/AES-CBC - 6.09 %
TLS > 1.0/RC4 - 4.96 %
TLS > 1.0/3DES - 0.71 %

Figure 3: Alexa Top 1000 server-selected symmetric ciphers

5.2 Stream ciphers

5.2.1 RC4

RC4 is a legacy stream cipher not common at present because of its security risks. How-
ever, browsers will still add it to their cipher suite preference list towards the end. TLS
uses a 16 byte key for RC4 without any other parameters and padding the message is not
necessary as this is a stream cipher. Bruteforcing the CF/SF messages requires knowing
which of the two possible known plaintexts appear at the beginning of the decrypted mes-
sages. Since there is no padding, the packet length provides a side-channel: the minimum
packet length is 4 + 12 + MAC output size. If the packet size is equal to this value then
the first 4 bytes are 14 00 00 0C otherwise the first 4 bytes are 43 00 00 [SZ] where
SZ can be easily calculated.

The False Positive rate of this method is 2−32 which is easily acceptable given that per
connection we need to try on average less than 225 keys. Should there be more than one
key, a further validation can be imposed by checking the MAC.

5.2.2 Chacha20

Chacha20 is a relatively new stream cipher which is used in a few cipher suites mainly in
Google Chrome and by crypto libraries such as BoringSSL but is not commonly selected.

/* CRYPTO_chacha_20 encrypts |in_len| bytes from |in| with the given key and

* nonce and writes the result to |out|, which may be equal to |in|. The

* initial block counter is specified by |counter|. */

OPENSSL_EXPORT void CRYPTO_chacha_20(uint8_t *out, const uint8_t *in,

size_t in_len, const uint8_t key[32],

const uint8_t nonce[8], size_t counter);

Initially5, the nonce was set to the TLS sequence number making the bruteforce process
similar to RC4. The only difference was that the MAC function is replaced with the
associated POLY1305 algorithm used with Chacha20. However, in recent6 implementa-

5https://www.ietf.org/proceedings/88/slides/slides-88-tls-1.pdf
6https://www.ietf.org/proceedings/90/slides/slides-90-cfrg-0.pdf
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tions, the nonce is also taken from the key material, making it the only cipher that needs
quadratic time to be bruteforced.

5.3 Block ciphers

5.3.1 AES

The Advanced Encryption Standard algorithm is the standard block cipher used in TLS
and is the only mandatory7 cipher. The commonly used block cipher modes supported
for AES are CBC and GCM. The CBC mode is slightly different in TLS 1.0 versus higher
versions and will be discussed separately.

5.3.2 AES CBC for TLS 1.0

The cipher block chaining mode is the second most commonly used mode in TLS connec-
tions and works as in the following diagram:

Figure 4: CBC mode

Decrypting each block requires the previous block to be used as a XOR mask after stan-
dard decryption. Because of this, the IV (initialization vector) can be viewed as an
artificial block that is used for the decryption (and encryption) of the very first block.
By randomizing the IV, a plaintext, although encrypted with the same key, will map to
different ciphertexts.

Since our KPA depends on the first 4 bytes of the first block we also need the IV. This
raises the time needed given N candidates of keys/IVs to N × (aes decrypt time + N ×
xor mask time) thus O(N2).

To narrow down the search we use another feature of block ciphers: padding. In TLS,
block cipher padding consists of a byte B indicating padding size, followed by B bytes of
value B as in figure 5.

Figure 5: TLS padding

7https://tools.ietf.org/html/rfc5246#section-9
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Thus, possible paddings are:

• 01 01

• 02 02 02

• 03 03 03 03

• etc.

Testing the block where padding is included does not require the IV and can be done in
N×aes decrypt time. The probability that a random block decrypts to a valid padding is
1

2562
. This reduces the time taken from quadratic to linear and by trying the next packet

in the stream for valid padding upon decryption reduces False Positive rate even further.

5.3.3 AES CBC for TLS 1.1 and higher

For TLS versions 1.1 and higher, the IV is included before the encrypted payload such
that the number of operations is reduced to N × (aes decrypt time+ xor mask time) for a
FP probability of 232 similar to the one in RC4. Reducing any duplicate candidates can
be done using the padding like before.

5.3.4 AES GCM

Galois Counter Mode is used as an Authenticated Encryption with Associated Data
(AEAD) mode in modern TLS implementations as it has speed advantages. Basically, it
can be viewed as AES in Counter Mode with a built-in MAC primitive:

• the Counter Mode part requires the AES key and a nonce

• the authentication part requires authentication data and the encryption of a null-
byte block with the AES key (resulting H).

The AES key and 4 bytes from the nonce are taken from the keying material. The rest
of the nonce precedes the encrypted payload as the explicit nonce. The additional data 8

depends on the packet sequence number.

Thus, applying the same known plaintext attack technique as before depends on both the
key and the nonce making the running time once again quadratic. To reduce it we need
further insight into the GCM mode in order to use the information given by the tag.

Since we can mimic the authentication algorithm, it is easy to obtain a value H for each
key candidate and follow a modified flow. First multiply the ciphertext blocks with H
and instead of combining the first encrypted counter to get the tag, use the tag to get
to the encrypted counter. Given that we know the value of the final tag we obtain the
encryption of the first counter-mode plaintext block with the key. Decrypting it should
reveal the explicit nonce, the secret salt and the counter equal to zero. The probability
of False Positives is 2−96. Moreover, let us observe that no plaintext must be known!

8https://tools.ietf.org/html/rfc5246#section-6.2.3.3
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Figure 6: AES GCM operation

6 Benchmarks

In the following, we will present the performance numbers we have obtained in the two
main components: Telescope and Telesync.

6.1 Telescope benchmarks

To assess the performance penalties imposed, a couple of tests have been devised for the
two main platforms used in the cloud: Linux and Windows. The tests benchmark the
disk space used, the VM pause time and the network delay caused by the page dump.

6.1.1 Linux serial connections

In the first scenario, we test 100 connections in serial from the Linux command line.
To avoid the delay imposed by serving the actual HTTPS content we only measure the
handshake time:

#!/bin/bash

echo > test

for i in ‘seq 1 100‘; do

openssl s_client -connect nimbus.bitdefender.net:443 < test &>/dev/null

done
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We get the following time measurements first without the Telescope attached to the VM
and then with:

# time bash serial.sh # without Telescope

real 0m2.920s

user 0m1.405s

sys 0m0.444s

# time bash serial.sh # with Telescope

real 0m3.493s

user 0m1.006s

sys 0m0.746s

The overhead imposed is of 500 ms, thus 5 ms on average per connection. Regarding disk
space, the memdumps vary between 512K an 2500K in this test run as can be seen in
figure 7.
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Figure 7: Memory dump size for serial connections on Linux

The VM pause time varies between 0.012 ms and 0.291 ms with an average of 0.058 ms
and page dump time (packet delay) varies between 0.181 ms and 2.980 ms with an average
of 0.471 ms as can be seen in figure 8.
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Figure 8: VM pause time and delay for serial connections on Linux
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6.1.2 Linux parallel connections

A more plausible case is with connections happening in parallel. To this end, we modify
our script in the following way:

#!/bin/bash

for i in ‘seq 1 100‘; do

openssl s_client -connect nimbus.bitdefender.net:443 < test &>/dev/null &

done

while [ 1 ] ; do

jobs | grep "Running" &>/dev/null

if [ $? -eq 1 ] ; then

break;

fi

done;

As before, we present the results with and without Telescope:

$ time bash parallel.sh #without Telescope

real 0m0.539s

user 0m0.278s

sys 0m0.257s

$ time bash parallel.sh #with Telescope

real 0m1.139s

user 0m0.511s

sys 0m0.582s

The overhead imposed is about the same: 600 ms meaning 6 ms per connection.

In this case, the memory dump size has increased because of background activity, the
average size being 6968 KB as can be seen in figure 9.
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Figure 9: Memory dump size for parallel connections on Linux

The VM pause time varies between 0.016 ms and 0.169 ms with an average of 0.035 ms
and page dump time (packet delay) varies between 0.210 ms and 9.684 ms with an average
of 2.29 ms as can be seen in figure 10.

16



0 100 200 300 400 500 600
VM Pause event index

0.00

0.05

0.10

0.15
M

illi
se

co
nd

s
Average

0 50 100 150 200 250 300
Packet delay event index

0

2

4

6

8

10

M
illi

se
co

nd
s

Average

Figure 10: VM pause time and delay for parallel connections on Linux

6.1.3 Windows Firefox browsing session

On Windows, we assess the performance a bit differently: we shall visit 5 HTTPS enabled
sites as part of a routine browsing session:

• https://conference.hitb.org

• https://mail.google.com

• https://twitter.com

• https://facebook.com

• https://slack.com

This results in 90 connections logged and as it was expected, the Windows environment
modifies more memory pages than its Linux counterpart: on average 14541 KB in our
session but with some heavy outliers, such as the 155 MB memdump as can be seen in
figure 11.
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Figure 11: Memory dump size for a browsing session on Windows

The VM pause time varies between 0.031 ms and 0.215 ms with an average of 0.05 ms and
page dump time (packet delay) varies between 0.776 ms and 9.997 ms with an average of
5.22 ms as can be seen in figure 12.
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Figure 12: VM pause time and delay for a browsing session on Windows

6.2 Telesync benchmarks

For the crypto benchmarks we will investigate the performance on the most common
cipher: AES-GCM, which also requires the most operations to be done in the brute-
force process, and specifically we focus on the larger memory dumps from the Windows
experiments.

Firstly, we check the raw performance, without heuristics and running on only one core
versus six cores:

$ du -k

155608 ./telescope-10.10.15.33:49818=104.244.43.39:443-pmEaYq

$ time bash -c "TLS_HEURISTICS=0 OMP_NUM_THREADS=1 /opt/weapons/telescope/telesync

./telescope-10.10.15.33:49818=104.244.43.39:443-pmEaYq"

Cipher suite is C02F => TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

[Decryption time in ms: 6657.724]

[telesync.c]:916 Client write key is: D49A9B4EEFDE497BC88E1B4792555988

[telesync.c]:917 Server write key is: 449E186FE18729257CDAAB7B4C26DC79

$ time bash -c "TLS_HEURISTICS=0 OMP_NUM_THREADS=6 /opt/weapons/telescope/telesync

./telescope-10.10.15.33:49818=104.244.43.39:443-pmEaYq"

Cipher suite is C02F => TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

[Decryption time in ms: 645.495]

[telesync.c]:916 Client write key is: D49A9B4EEFDE497BC88E1B4792555988

[telesync.c]:917 Server write key is: 449E186FE18729257CDAAB7B4C26DC79

As expected, the time taken drops considerably when using multiple cores, in this case
the speedup is 10X as one thread finds the correct key before the end of its share and
forces the other threads to abandon their search too.

But this is not the only optimization that we can employ: the memory dumps are not
simply random but structured data and as we have observed, consist of repeating patterns,
low entropy segments and null bytes comprise anywhere from 40% to 75%. Thus, we can
employ some heuristics given that the Key Material generated from the PRF has pseudo-
random statistical properties. Using these heuristics the numbers drop down even further:
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$ time bash -c "TLS_HEURISTICS=1 OMP_NUM_THREADS=1 /opt/weapons/telescope/telesync

./telescope-10.10.15.33:49818=104.244.43.39:443-pmEaYq"

Cipher suite is C02F => TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

[Decryption time in ms: 3844.105]

[telesync.c]:916 Client write key is: D49A9B4EEFDE497BC88E1B4792555988

[telesync.c]:917 Server write key is: 449E186FE18729257CDAAB7B4C26DC79

$ time bash -c "TLS_HEURISTICS=1 OMP_NUM_THREADS=6 /opt/weapons/telescope/telesync

./telescope-10.10.15.33:49818=104.244.43.39:443-pmEaYq"

Cipher suite is C02F => TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

[Decryption time in ms: 424.872]

[telesync.c]:916 Client write key is: D49A9B4EEFDE497BC88E1B4792555988

[telesync.c]:917 Server write key is: 449E186FE18729257CDAAB7B4C26DC79

However, by using heuristics getting a definitive measurement of the speedup is signifi-
cantly more complicated. In another browsing session, a memory dump 53% bigger (155
MB versus 237 MB) than the previously tested could be processed 3.6 times faster:

$ du -k

243436 ./telescope-10.10.15.33:49794<=>54.247.125.40:443-Dym4t0

$ time bash -c "TLS_HEURISTICS=0 OMP_NUM_THREADS=6 /opt/weapons/telescope/telesync

./telescope-10.10.15.33\:49794\<\=\>54.247.125.40\:443-Dym4t0"

Cipher suite is C02F => TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

[Decryption time in ms: 719.757]

[telesync.c]:916 Client write key is: B4767DDEA269402A6325FBF34EDD087A

[telesync.c]:917 Server write key is: 79F4EFFEEB4F7FA1BCF653E2A5D519D7

$ time bash -c "TLS_HEURISTICS=1 OMP_NUM_THREADS=6 /opt/weapons/telescope/telesync

./telescope-10.10.15.33\:49794\<\=\>54.247.125.40\:443-Dym4t0"

Cipher suite is C02F => TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

[Decryption time in ms: 117.322]

[telesync.c]:916 Client write key is: B4767DDEA269402A6325FBF34EDD087A

[telesync.c]:917 Server write key is: 79F4EFFEEB4F7FA1BCF653E2A5D519D7

7 Conclusion

As we have shown, TLS decryption is feasible given access to the hypervisor. If a known
template VM is employed, key exfiltration can be done instantly because the memory
layout is predictable and breakpoints can be easily set from outside the guest machine.

If there is no guarantee on the VM layout, the Telescope can be used to create a dif-
ferential memory dump, without pausing the machine for more than 0.1 ms on average.
The resulting dump can be processed offline later in an overwhelming majority of cases
in linear time.

By using the Telescope, pause time is barely noticeable such that the SLA will not be
affected and unless the tenant is actively looking, it is virtually impossible to tell that the
techniques we have described are being applied to their VM.
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