Kernel Exploit Sample Hunting and Mining

Prepared by

Broderick Aquilino

Wayne Low
25 May 2016
Contents
FY o1y - ot OO TP PP P PP OPROPRTOPPTO 2
INEFOAUCTION ..einiiiiiie ettt s e e e s et e s et e sre e e sneeesneeesnnee s 2
Elevation of privilege vs User ACCOUNT CONETIOl.....uuiiiiiiiiiiiiiiiiceee e e e e e e e e e e 3
Write-what-where primitive kernel @Xploitcooi i 5
Discovering elevation of privilege exploit SAMPIESuiiiiiiii i 6
L@ =] U 1 PP PUPPPRPIN 10
DX/ DYF@ vttt ettt e e e e ettt e et e et e e et e e e teeeebaeeebae e s baeesteeeaabaaeabaaeaabaeeebbeeebaeeabaeeetreeeraeeearreenn 10
CarPEID/ROVIIX ottt ettt et e ettt e e e tte e e e bt e e eetbeeeetaeeeetteeeeabeesbaeeeatseeesseeesseeetaeesnsseeesseeansaeesnses 11
RAMNIT & EVOTOD ..ttt s st sre e sreee s 12
(DT of o Y OO UTTPRORPPPPPTPPR 13
ANOMATIES ittt sttt sttt s et e s et e st e s b e e e s bt e s reeesreee s 15
Non-system Services Having System INtegrity LEVElcccuiiiviiiiiiiiieeec e 15
Processes Having System Integrity Level with Non-system Integrity Level Parent Process................... 15
Processes Having Integrity Levels Lower than High with Administrative Windows Privileges 16
Processes Accessing Objects with Higher Integrity Level ... 19
CONCIUSION ettt sttt et e st e s e e s b et e s b et e sabeeesabeeesneeesanaeesnanesane 19

] L= Lol =L R 20

Abstract

In the era of cyberwarfare, it becomes a norm to see cyber criminals use multi-level attacks to penetrate
a multi-layered protected network infrastructure. We often see APT attackers manipulate 0-day or N-
day Windows kernel vulnerabilities in order to guarantee a successful full system compromise. It would
be a surprise if we do not see Windows kernel exploit involved in such targeted attacks.

It is also worth noting that beside APT attackers, the botnet operators also seize the opportunity to
integrate these publicly, or sometime undisclosed, kernel exploits in their piece of work. One notable
example is the CVE-2015-0057 Win32k exploit seen integrated into Dridex, a notorious banking Trojan
spreading in the wild. This was first spotted by F-Secure’s proprietary dynamic-analysis system in 20"
April 2015 however no information was provided by F-Secure during that time. The exploit was also seen
to be removed from newer version of Dridex distributed after late June 2015 since after the disclosure
of FireEye. Apart from that, there are a lot more malware families manipulating kernel exploit, to name
a few:

Turla

Necurs
Carperb/Rovnix
Evotoob

Discpy

e Ramnit
This topic will focus on how to proactively discover the effective samples with kernel exploits, or
potentially 0-day kernel exploits, through a dynamic-analysis system. This paper will also detail the
analysis of some kernel exploit that could bypass kernel exploit detection and prevention methodology
used in Host Instruction Prevention System (HIPS).

Introduction

Finding a previously undisclosed Windows kernel vulnerability, which can be done via various methods
like automation fuzzing, black box analysis or static code analysis, is a lengthy process and not an easy
task. In addition, reliable kernel vulnerability exploitation it is still questionable even though one is
capable to discover new vulnerability. This is the main reason why malware authors are often quick in
response to the elevation of privilege (EoP) exploits published on the Internet, as these exploits are
often reliable. Besides that it also allows the malware authors to merge this open source EoP exploits
into their malware code with least amount of effort. On the other hand this essentially enables malware
researchers to effectively tell if the sample is malicious by finding the existence of the EoP exploits,
which is one of the goals of this paper. Furthermore this paper also aims to dissect some of the
interesting EoP payloads as well as the generic EoP prevention technology.

Elevation of privilege vs User Account Control

Some might wonder why on earth using EoP exploits to elevate a process privilege since there are some
simpler privilege elevation methods like User Access Control (UAC) bypass techniques publicly available
already. One of the advantages of manipulating UAC bypass over EoP exploit is its reliability and stability
since the UAC bypass tricks are purely implemented under user mode code and it won’t cause system
crashes in case of program error. However UAC is working for Administrator account only. However,
Administrator will always receive UAC dialog when the notification setting in User Account Control
Settings was set to “Always notify” even if UAC bypass technique was deployed. As such it might alert
the users the existence of suspicious activities when the UAC dialog appeared from nowhere. Hence,
from the attacker’s perspective, bypassing UAC might not be a perfect way for privilege escalation. As a
result, in order to take advantage of full system privilege via EoP exploit while maintaining its resiliency,
we often see the malware authors combine both the UAC bypass as well as the EoP exploit. The Figure 1
depicts the logic typically used by malware authors in the implementation of a standard privilege
elevation routine.

Nonetheless, there is still lots of malware families do not follow this standard but instead they attempt
to include multiple EoP exploits exploiting different Windows kernel vulnerabilities, which has no
restrictions similar to UAC bypass techniques. Apparently the only caveat of exploiting Windows kernel
vulnerabilities is its reliability as any unsuccessful attempt of EoP exploit might cause Blue Screen of
Death (BSOD) on the machine. This is the reason why we regularly see the similar kernel vulnerabilities,
for example CVE-2013-3660, CVE-2014-4113, CVE-2015-0057 and CVE-2015-1701 being manipulated by
malware authors, particularly those exploits published by security researchers which are proven to be
reliable most of the time. Certainly the exploits based on the CVEs mentioned above have been ported
by some researchers to support 64-bit platform and were open source, which is another reason why
they are popular to the malware authors.

Is current
user an
Admin

account?

Is
Medium/Low
token
integrity
level?

UAC bypass

EoP exploit 13

successful?

Execute
payload

Figure 1: Standard elevation of privilege decision

Write-what-where primitive kernel exploit

While discussing kernel exploitation, write-what-where primitive is a most commonly used vector. It is
powerful and most straightforward kernel exploitation technique, which is also widely used by exploit
writers. In a nutshell, write-what-where primitive lets an attacker store (write) a specific value (what) to
a specific kernel pointer address (where). A classic target for write-what-where scenario is
HalDispatchTable but the description of this target is out of the scope of this paper. Hereafter, we will
refer to this write-what-where primitive approach as writing arbitrary address to HalDispatchTable.
Generally, an exploit can be constructed as following:

Prepares a user mode buffer to store the shellcode

Uses write-what-where approach to overwrite HalDispatchTable+sizeof(void*) with shellcode

address

3. Redirects code execution to the prepared shellcode using NtQueryintervalProfile

This approach is the simplest form of exploitation but it has some limitations as well. Due to the
enhanced mitigation techniques introduced in modern Windows operation system, user-mode shellcode
execution in step 3 will not work on Windows 8 and above - thanks to the Supervisor Mode Execution
Prevention (SMEP) and Supervisor Mode Access Prevention (SMAP). Even though SMEP is useful to stop
user-mode shellcode execution, there are various known techniques can be deployed to circumvent
SMEP [1]. A researcher, named n3phos, has shown a working example on how to create a reliable
exploit leveraging primitive approach to bypass SMEP [2]. This is just one of the real world examples to
show how prominent is this approach to the exploit writers. In fact this approach usually depends on
certain vulnerability context but it works in most of the vulnerability classes. For example, some of the
exploits that are not based on the primitive approach:

1. CVE-2014-4113 —The lack of sanitization in win32k code allows arbitrary value returned from
user-mode to kernel mode. This allows the attacker to send a crafted win32k!tagWND structure
define at a NULL memory address allocated via NtAllocateVirtualMemory, which will be used
later in the win32k code that result in arbitrary code execution from the field crafted in
tagWND->IpfnWndProc.

2. CVE-2015-1701 — The nature of this vulnerability resides in the infamous user-mode callback
functions in win32k code. Essentially, an application is not restricted to hook these user-mode
callback functions where the initial address of these callback functions can be dereferenced by
PEB->KernelCallbackTable. The root cause of this vulnerability is that a callback function, in this
case user32!__ClientCopylmage, is hooked by the exploit so that the hooked function can
modify the state tagWND->bServerSideWindowProc of the server-side windows procedure that
could result in a user-mode windows procedure stored in tagWND->IpfnWndProc, to be
executed under kernel-mode context.

As you can see, some exploits don’t necessary leverage NtQueryintervalProfile to achieve kernel
exploitation. So, this type of kernel exploits might not be able to be spotted directly using our sample

hunting methodology, however the use of native API NtQuerylntervalProfile derived from
HalDispatchTable is still favorable to us in the event of mining kernel exploit samples and it has been
proven to be helpful in discovering 0-day kernel exploits.

Discovering elevation of privilege exploit samples

To reiterate, the target of HalDispatchTable in write-what-where primitive has been the most common
vector used in kernel exploitation. In the event of successfully exploiting kernel vulnerability, the
attacker will need to call NtQueryintervalProfile in order to transfer code execution to arbitrary address
under the attacker’s control. So it is important to keep in mind that these APIs string are native kernel
APls and they are not commonly used by user-mode application, hence it is safe to say that when these
APIs string are found in a PE binary, the said PE binary could potentially contain a kernel exploit.

rule www_kernel exploit

{

meta:

description = "Typical APIs used in Write-What-Where Windows kernel exploitation"
strings:

SNtQueryIntervalProfile = "NtQueryIntervalProfile" nocase

S$ZwQueryIntervalProfile = "ZwQueryIntervalProfile" nocase

SHalDispatchTable = "HalDispatchTable" nocase

condition:

($SNtQueryIntervalProfile or $ZwQueryIntervalProfile) and $HalDispatchTable and

not tags contains "native"

Listing 1: Yara rule to identify NtQueryintervalProfile

The Yara rules shown in Listing 1, 4 and 5 might not give a promising result in finding samples that are
encrypted or encoded. So it is necessary to use these rules in a dynamic analysis system that allows you
to effectively find the related API string from the stripped or unpacked binary exists in the process
memory. While discussing elevation of privilege, the traditional kernel exploit payload involves the
following steps:

1. Getthe EPROCESS structure of the System (process id=4) and subsequently obtains its
corresponding access token address.

2. Get the EPROCESS structure of the exploit process and replace its access token address with the
System’s access token.

3. Asaresult the exploit process possesses the same access token as the System which has the
highest privilege on Windows environment.
Traditionally these steps are implemented in pure assembly code, which would use constant offsets to
obtain the actual access token address from EPROCESS structure and then traversing the active process
list and other types of hardcoded information. However, payloads these days would use the
documented Windows kernel APl to improve its resiliency and portability. Some of the example looks
like the following code snippet:

int _ stdcall elevate system privilege ()
{

int result;

PEPROCESS currentEproc;

PEPROCESS systemEproc;

ptrPsLookupProcessByProcessId(g_dwCurrentPid, ¤tEproc);
ptrPsLookupProcessByProcessId(g_dwSystemPid, &systemEproc);
result = g dwOffsetEprocToken;

* (_DWORD *) ((char *)currentEproc + g dwOffsetEprocToken) = *(_DWORD *) ((char *)systemEproc +
g_dwOffsetEprocToken) ;

return result;

Listing 2: A variant of elevation of privilege payload

int elevate privilege()

{
PACCESS_TOKEN currentToken;
PACCESS_TOKEN SystemToken;

PEPROCESS currentEproc;

g_boolExploited = 1;
* (_DWORD *) (g_pHalDispatchTable + 4) = g _origNtQueryIntervalProfile;

if (!ptrPsLookupProcessByProcessId (g _dwCurrentPid, ¤tEproc))

currentToken

pfnPsReferencePrimaryToken (currentEproc) ;

SystemToken = pfnPsReferencePrimaryToken (* (_DWORD *)g PsInitialSystemProcess);

replace_token (currentToken, SystemToken);

return 0;
Listing 3: Another variant of elevation of privilege payload

The following rules are used in conjunction with www_kernel_exploit shown in Listing 1 to generically
identify the other variants of kernel exploit payload that might not call the native API
NtQueryintervalProfile directly based on the fact that some kernel exploit that don’t leverage primitive
approach still utilize documented kernel API in token stealing operation.

rule generic_um win32k kernel exploitation

{

meta:
description "Typical APIs used in user-mode exploit to leverage win32k kernel mode
vulnerability"
strings:
$PsLookupProcessByProcId = "PsLookupProcessByProcessId" nocase

SNtQuerySystemInformation = "NtQuerySystemInformation" nocase

SzZwQuerySystemInformation = "ZwQuerySystemInformation" nocase

condition:

($SNtQuerySystemInformation or $ZwQuerySystemInformation) and

$PsLookupProcessByProcId and (pe.imports ("user32.dll") or pe.imports("gdi32.d11")) and
tags contains "peexe" and

not tags contains "native"

Listing 4: Yara rule to generically identify payload used in win32k.sys exploit

rule generic_um_ kernel exploitation

meta:

description = "Typical APIs used in user-mode exploit to leverage kernel mode
vulnerability"

strings:

SNtQuerySystemInformation = "NtQuerySystemInformation" nocase

= "ZwQuerySystemInformation" nocase

$ZwQuerySystemInformation

$PsLookupProcessByProcId = "PsLookupProcessByProcessId" nocase

$PsReferencePrimaryToken = "PsReferencePrimaryToken" nocase

condition:

($SNtQuerySystemInformation or $ZwQuerySystemInformation) and

($PsLookupProcessByProcId or $PsReferencePrimaryToken) and

tags contains "peexe" and

not tags contains "native"

Listing 5: Yara rule to generically identify payload used in exploit

Case study

Dridex/Dyre

One of the interesting findings from the result of rule 1, deployed in our in-house dynamic analysis
system, in Listing 1 is the discovery of first malware on May 2015 exploiting CVE-2015-0057 Windows
kernel vulnerability — 3 months after Microsoft patched the vulnerability as MS-15-010. After analyzing
the exploit, we realized that it was the first malware exploiting vulnerability specified in CVE-2015-0057.
It is worth to mention that there was no public exploit code available that time. However the EoP
payload used by the exploit is similar to the code presented in Listing 2.

After the blog post of Dridex leveraging the 1-day exploit has been disclosed by FireEye around July
2015, we noticed that the EoP exploit has been disappeared in later variants of Dridex. The author has
probably learnt the lesson from FireEye’s disclosure of its 1-day exploit, so it started to push the EoP
exploit to the infected machine downloadable from the remote server only if the infected machine has
not installed Microsoft’s patch for CVE-2015-0057 and the current user is not running as administrator
[4]. It also started to introduce UAC bypass techniques to elevate the malware process integrity level
when the user account is local administrator group. One of the UAC bypass techniques used by Dridex
was AppCompat whitelisting vulnerability that allows malware whitelist their executable into
Application Compatibility Database which can effectively suppress UAC prompt when the malware’s
executable is triggered. Microsoft has addressed this vulnerability in October 2015 update [5]. As we
constantly keep track of the development of Dridex, we realized that the recent variants of Dridex have
obfuscated all readable string and the strings will only be de-obfuscated in run-time. Some of the de-
obfuscated string, as shown in Figure 2, leads us to believe that Dridex intended to remove unwanted
Microsoft’s patches like KB3045645 and KB3048097 if it found installed on the infected machine before
executing any UAC bypass routines. However we couldn’t find any routine that actually trigger the
command. So we assumed that this feature could be implemented in the future variants.

poLlnt

point #A20UMP_. 8

P
1]
W

point #830UMP

e
]
W

point #a30DUMP

-
]
w

point #A30UMP_

P
m
W

point #830UMP_.

point #A30DUMP

-
m
W

8
@
2]
8
@

ac
ACCTO0

point #A20UMP_

-
m
w

point #A30DUMP_

P
1]
W

1]
W

point #a30UMP_.

P
1]
W

= _)Gl Lo

v qulungn i3l |
ACCTYac

cvac e 21:83 s point #A3DUMP_.
BEECC7ac

Figure 2: Dridex wanted to remove installed Microsoft patches

Carperb/Rovnix

Rovnix is one of the well-known malware families to adapt multiple publicly known kernel exploits. This
is mainly because it uses bootkit component as its persistence mechanism to store fileless rootkit driver
in the hidden disk sector to deliver and execute its payload before Windows boot up. Bootkit technique
is very powerful to subvert most of the security products; however it is mandatory for one to have
sufficient privilege to open physical disk in order to install bootkit components. Rovnix consists of a
variety of open source kernel exploits like CVE-2015-1701, CVE-2014-4113 and CVE-2013-3660. Our
analysis of the recent variant, sample’s compilation timestamp suggested 11 January 2016, reveals that
Rovnix started to integrate Hacking Team’s exploit leveraging vulnerability CVE-2015-2487 — that was
leaked around July 2015. These exploits payloads are identical to the proof-of-concept (POC) published
on the Internet, as shown in Listing 1 and 2, which indicates that whoever created this sample just copy-
paste the source code from the POC.

Before exploiting the kernel vulnerabilities, it performs some checks to determine if the machine is
vulnerable or not:

Determine if the process is executed under Administrator account
Determine the integrity level of the process
Determine win32k.sys file’s timestamp via GetFileTime and FileTimeToSystemTime APlIs call.

A

Attempts from the latest exploit to the older ones, until one of them successfully elevate the
privilege

When the kernel exploitation is not successful, it falls back to UAC bypass methods to elevate the
privilege.

Ramnit & Evotob

Ramnit is a long-standing malware family that first emerged around 2011. At the same time, it has been
evolving to counteract the improved mitigations introduced in the latest Windows operating system. It
is also one of the very few malware families that adapt the new kernel exploits from the old one very
quickly; while Evotob is another malware family doing that same thing.

Ramnit 07 October 2014 CVE-2013-0008
CVE-2013-3660

05 February 2015 CVE-2013-3660

CVE-2014-4113

Evotob 29 April 2015 CVE-2013-3660

CVE-2014-4113
CVE-2013-3660
CVE-2015-0057
CVE-2015-0057
CVE-2015-2387

Table 1: Different kernel exploits used by Ramnit and Evotob

10 June 2015

14 July 2015

Another similarity between Ramnit and Evotob is that they share the same local privilege elevation
exploit framework that we believed developed by the same author.

int _ cdecl exploit_eop(LPSTR lpCommandLine) cdecl exploit_eop (LPSTR lpCommandLine)
{ (
if (1 (int8)is NT6 2() && '(ntg) 10) if ('(u int8)is NT6 2() && 'is NT6 3())
{ (
if ((int8)is NTS()) if ((int8)is NTS5())
{ (
if (' (int8)is_patch NTS5()) ir (' (] int8)is NTS5 patch_installed()
{ (
if (check_sid_isadmin()) if (is_admin())
return ' ; return |;
LABEL_6: LABEL 6:
exploit_cve 2014_4113(1lpCommandLine) ; exploit_eop_cve_2015_0057(al);
return return |;
})
} goto LABEL_13;
else if (!'(J int8)is patch NTé()))
{ if ((unsig 1 __int8)is_wowéd ())
if (check_sid_isadmin() && check_token_il() >) {
return if (! (unsigned NT6é_patch_installed()
goto LABEL 6; {
} if (is_admin() && get_access_token IL() >)
exploit_cve_2013_3660 (1lpCommandLine) ; return |;
return ; goto LABEL 6;
} }
return ; LABEL_13:
} execute_payload();
return | ;
}
. }
R-alnnlt exploit_eop_cve_2015_2387(al); EVOtOb
return °;
}

Figure 3: Similar local privilege escalation framework used by Ramnit and Evotob

Discpy

Although Discpy is not a popular family, it uses some out of ordinary exploit payload that we haven’t
seen from other malware families. The Discpy sample was first seen on May 2014 exploiting CVE-2013-
3660. Though it was a common vulnerability exploited by many malware families, what caught our
attention was its post kernel exploitation payload.

When a machine was exploited by Discpy successfully, the exploit first allocates kernel mode buffer via
ExAllocatePool to hold the Asynchronous Procedure Call (APC) injector routine. In short, this APC
injector is responsible to inject the final payload as an APC to a remote process. The target remote
process would be any active privileged Windows processes, which is very unlikely to be monitored by
HIPS. In normal circumstances, an unprivileged process is unable to access to privileged Windows
processes because of the lack of security permission. This security permission is neglected when the
unprivileged process gain arbitrary code execution in kernel mode context due to successful kernel
exploitation. In other words, this process running under kernel mode context can perform all operations
to any privileged processes without the constraints of a restricted user account. In this particular
exploit’s payload, the APC code injector executed in kernel mode will traverse a list of active threads
from svchost.exe and find alertable thread (ETHREAD.Tcb.Alertable) and non-system thread
(ETHREAD.Tcb.SystemThread). One mandatory and important step when implementing this kind of
payload is that the payload code must reside in kernel mode buffer to avoid any system crashes when
injecting APC routine code from the current process context to remote process context via native API
NtWriteVirtualMemory. After the APC routine code is in place in the remote process, an APC object can
be initialized from KelntiailizeApc and assigned this APC object the alertable thread that it found earlier
via KelnsertQueueApc. When in the APC queue, the APC thread will be triggered and executed only after
ETHREAD.Tcb.ApcState.UserApcPending has been set accordingly.

Discpy.exe

Figure 4: Discpy post kernel exploit payload

Anomalies

There is a famous saying “knowing is half the battle”. For example, we need to know that a process is
misbehaving first before we would know that there is a need to terminate it. In this section, we share
some anomalies that we observed from the real-world kernel exploit sample that can be used to search
for elevated processes.

Non-system Services Having System Integrity Level

In normal circumstances, there should not be any user processes having system integrity level.
According on MSDN [6], “Processes you start and objects you create receive your integrity level
(medium or high) or low if the executable file's level is low; system services receive system integrity”.
Something is wrong when there is a process having system integrity level but is not a system service.

The problem is that there is no definite way to determine whether a process is a system service or not.
However, some checks might be possible. For example, system services should have been launched by
services.exe. This means that there should not be any processes having system integrity level that are
not under the process tree of services.exe unless they are Windows system services.

Another check would be that there should not be any processes having system integrity level that are
child of applications like explorer.exe, which interacts with the desktop. This leads us to our next
approach.

Processes Having System Integrity Level with Non-system Integrity Level Parent Process

The previous anomaly might require some sort of whitelist process names of Windows system services.
However, a more generic anomaly to look for is if the parent of a process having system integrity level
but the former has a lower integrity level (Figure 5).

.~ explorer.exe:1632 Properties

| Image I Performance
| Threads [TCP/IP |
User: x-PClx

I Disk and Network |

2 Process Explorer - Sysi Is: www.sysi Is.com [x-PC\x] EI@

File Options View Process Find Handle Users Help

FIEIEI IR Y]

SID: 5-1-5-21-83793467-2424008433-855125016-1000
Session: 1 Logon Session:
Virtualized: No Protected:

Group

Mandatory Label\Medium Mandatory Level
NT AUTHORITY\Authenticated Users

B cmd.exe:4092 Properties

| Image | Performance
| Threads [TCP/IP |
User: x-PClx

| Disk and Network |

SID: 5-1-5-21-83793467-2424008433-855125016-1000
Session: 1 Logon Session:
Virtualized: No Protected:

Group

Everyone

BUILTIN\Administrators

Mandatory Label\System Mandatory Level
NT AUTHORITY\Authenticated Users

Process CPU Private Bytes = Working Set PID Description *
[m” svchost exe 8204 K 6,152 K 1380 Host Proces
[m"taskhost exe 6.460 K 7492K 1480 Host Proces
[m 7 svchost exe 2,196 K 4368K 1596 Host Proces
[m” sqlwriter.exe 1.112K 3488K 1720 SQL Server
[n7] Searchindexer.exe 0.02 15764 K 10.140K 1820 Microsoft Wi
[w"]svchost.exe 0.01 153,028 K 19.752K 2560 Host Proces

[m7lsass exe 0.16 2540K 5652K 504 Local Secur
[Ism.exe 0.03 1.180K 2600K 512 Local Sessic
= [0 csrss exe 0.01 1.112K 3784K 400 Client Serve |
[conhost exe 856 K 4088K 2076 Console Wir
. winlogon .exe 1520 K 4240K 432 Windows Lo|
(5] [explorer.exe 0.03 22144K 34568 K 1632 Windows Ex =
W# VBoxTray.exe 0.07 1.200K 4580K 2016 VitualBox G
2y procexp exe 0.84 12512K 21604 K 3588 Sysintemals
C\.jemd .exe 1548K 2176 K 4092 Windows Cd
< | m 3

Type : Name

Desktop \Defautt

Directory \KnownDlls

File Ci\Users'x

Key HKLM\SYSTEM"\Control Set001\Control\Nls\Sorting'\Versions

Figure 5: Child process (cmd.exe) has system integrity level but
parent (explorer.exe) only have medium integrity

Processes Having Integrity Levels Lower than High with Administrative Windows Privileges

So far we have been discussing how to identify anomalies based on the integrity level. Malwares want to
elevate their integrity levels to the highest level to be able to access the resources not available to them
at lower levels. However, it is also possible for them to directly acquire the necessary privileges without
elevating to a higher integrity level. For example, an exploit process could enable SE_DEBUG_PRIVILEGE

to allow itself to inject its routines into any processes regardless of the integrity levels or
SE_RESTORE_PRIVILEGE allows them to write to any files regardless of the DACL. It is important to take
note that none of the Windows applications running medium integrity level would be able to adjust the

access token privileges as some of the privileges are not present by default in standard user account, for
example SE_DEBUG_PRIVILEGE. Unless the malware is able to do self-elevation to administrator account

through UAC elevation and then adjust the access token privileges via Windows API

AdjustTokenPrivileges (Figure 7) or by enabling the disabled privileges on lower-integrity malware

process through kernel exploit, which is the anomaly that we are trying to detect.

oo C\Windows\system32\cmd.exe - _exAdjustTokenPrivileges.exe

C:\Users\analyst>cd desktop

C:\Users\analyst\Desktop>_exAdjustTokenPrivileges.exe

[-] Failed to adjust token privilege to 'SeDebugPrivilege’ (0x514)
Press any key to continue .

_:3 i

e Options View Proces

= He

d| @] = B F R A

M~

& Process Explorer - Sysinternals: www.sysinternals.com [win8_1_x86\analyst]

- o S

— O

Process CPU Private Bytes WorkingSet PID Integrity A
B conhostexe 0.02 844K 6176 K 1260 Medium
—In 600K 2324K
Bl cmd.exe 1.392K 1.832K 1428 Medium
v

CPU Usage: 10.83%

Commit Charge: 47.46% Processes: 43 Physical Usage: 48.38%

Figure 6: Normal user account is not allowed to adjust

privileges that are not assigned implicitly by operating

system

o I Administrator: Command Prompt I exAdjustTd o _exAdjustTokenPrivileges.exe:964 Prope.. — “ Il

C:\lWindows\system32>cd ZuserprofileZ

Image Performance Performance Graph Disk and Network
GPU Graph Threads | TCP/IP | Security | Environment | String

C:\Users\analyst>cd desktop User: wing_1_x86\analyst

. Lo SID: S5-1-5-21-138429228-1458770269-790455825-1001
C:\Users\analyst\Desktop>_exAdjustTokenPrivileges.exe

Press any key to continue . Session: 1 Logon 2aech
Virtualized: No Protected: No
Group . A
BUILTIN\Administrators
BUILTIN\Users
CONSOLE LOGON
Everyone
LOCAL

Logon SID (S-1-5-5-0-175692)
Mandatory Label\High Mandatory Level
NT AUTHORITY\Authenticated Users

NMT ALITUNADITVINTENDANTN/C N
< >
Group SID: n/a
Privilege Flags A
SeBackupPrivilege Disabled
SeChangeNotifyPrivilege Default Enabled
SeCreateGlobalPrivilege Default Enabled
SeCreatePagefilePrivilege Disabled
IS S RS WA Dol o
SeDebugPrivilege Enabled |
. .) . elmpersonateFrivilege Uefau nabled
& Process Explorer - Sysinternals: www.sysinternals.com [wi SelncreaseBasePriorityPrivilege Disabled v
File Options View Process Find Users Help Ermis=ane
d @508 = x4 | } {
Process CPU Private Bytes Working Set P! oK Cancel
\: # | _exAdjustTokenPrivileges.... 504 K 2.028K
@ cmd.exe 1.388K 1.836K 144 High
Jy procexp.exe 220 12876 K 21,228K 3132 High
v

CPU Usage: 5.92% Commit Charge: 46.83% Processes: 43 Physical Usage: 48.01%

Figure 7: An example of administrative privilege like
SE_DEBUG_PRIVILEGE can be enabled only by a local
administrator account running in high integrity level

According on MSDN [7], “certain administrative Windows privileges can be assigned to an access token
only with at least a high integrity level” (Listing 7). This means that there is something wrong when they
are found in processes having lower integrity levels.

SE_CREATE_TOKEN_PRIVILEGE SE_DEBUG_PRIVILEGE

SE_TCB_PRIVILEGE SE_IMPERSONATE_PRIVILEGE
SE_TAKE_OWNERSHIP_PRIVILEGE | SE_RELABEL_PRIVILEGE
SE_BACKUP_PRIVILEGE SE_LOAD_DRIVER_PRIVILEGE

SE_RESTORE_PRIVILEGE

Listing 7: Administrative privileges associated with a high integrity level

Processes Accessing Objects with Higher Integrity Level

Another technique that malware may use without elevating to higher integrity level is to remove the
protection of its target object. This may be achieved by tampering with the security descriptor of the
target object. According on MSDN [8], “A security descriptor with no DACL (also known as a NULL DACL)
gives unconditional access to everyone”. In our experiment, it seems that setting the SACL and DACL
field of the security descriptor or the security descriptor itself to NULL has the same effect [9].

There may be other techniques for processes having lower integrity level to manipulate objects with
higher integrity level therefore a more generic approach is to simply check if a process is trying to access
an object with a higher integrity level. The idea of the Windows integrity mechanism is to “restrict the
level of access that is available to lower-integrity subjects” [7]. Something fishy is going on; let us say for
example, if a process having medium integrity level is opening a handle to another process having high
integrity level to inject code into it.

Conclusion

Samples exploiting kernel vulnerabilities will eventually use kernel mode APIs because it is not trivial to
implement those routines themselves. This means that we can use the names of those APIs to hunt for
such samples because user mode samples should not have them in normal circumstance. However,
expect the names to be encrypted so the approach presented in this paper is best done in dynamic
analysis systems.

This paper has also presented some anomalies that may be used for discovering unauthorized processes
having elevated privileges. The usual payload of samples exploiting kernel vulnerabilities is EoP
therefore being able to discover such processes can also support the hunting process. It also provides
information that may help in mitigating such attacks. The latter is particularly challenging because it is
usually game over when a malware is able to reach the kernel mode. The malware can practically do
anything to remove all the anomalies. Checking for the presented anomalies also comes with a
performance overhead.

However, this does not mean that we should make it easy for them. Hope lies in the fact that it is not
trivial to tamper with kernel objects directly and that can be changed between Windows releases. This
might discourage attackers to iron out all the anomalies and just focus on attaining an EoP.

References

[1] http://j00ru.vexillium.org/?p=783

[2] https://github.com/n3phos/zdi-15-030

[3] https://dl.packetstormsecurity.net/papers/attack/CVE-2014-4113.pdf

[4] http://blog.fortinet.com/post/what-s-cooking-dridex-s-new-and-undiscovered-recipes

[5] https://support.microsoft.com/en-us/kb/3045645

[6] https://msdn.microsoft.com/en-us/library/windows/desktop/bb648648%28v=vs.85%29.aspx

[7] https://msdn.microsoft.com/en-us/library/bb625963.aspx

[8] https://technet.microsoft.com/en-us/library/cc781716%28v=ws.10%29.aspx#w2k3tr_acls _how ctlz

[9] https://media.blackhat.com/bh-us-
12/Briefings/Cerrudo/BH_US 12 Cerrudo_ Windows_ Kernel WP.pdf

