

 info@securenetwork.it

Italia

PoliHub

Via Giovanni Durando, 39

20158 Milano

United Kingdom

New Bridge Street House

30-34, New Bridge Street

EC4V 6BJ, London

 (+39) 02 9177 3041

The Windows Phone Freakshow

Windows Phone App Security for Builders

and Breakers
Hack in The Box Conference, Amsterdam 2015 - Research Whitepaper v. 2.0

Luca De Fulgentis – luca@securenetwork.it

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 2

Table of Contents

INTRODUCTION 3

M1 – WEAK SERVER SIDE CONTROLS 4

M2 – INSECURE DATA STORAGE 5

M3 – INSUFFICIENT TRANSPORT LAYER SECURITY 9

M4 – UNINTENDED DATA LEAKAGE 13

M5 – POOR AUTHORIZATION AND AUTHENTICATION 15

M6 – BROKEN CRYPTOGRAPHY 18

M7 – CLIENT SIDE INJECTION 21

M8 – SECURITY DECISIONS VIA UNTRUSTED INPUTS 23

M9 – IMPROPER SESSION HANDLING 26

M10 – LACK OF BINARY PROTECTIONS 28

CONCLUSIONS 29

REFERENCES 30

Introduction

In 2014 we collected samples of insecure code while analyzing 60+ apps targeting Microsoft’s

Windows Phone platform. The initial set was mostly composed by applications developed with

the Silverlight 8.x technology, and was characterized by a 30% of mobile banking apps. Each

identified issue has been mapped to the corresponding Mobile Top Ten Risk for 2014 entry

(Figure 1), and statistics on the initial study have been shared with the OWASP Mobile Project for

the definition of the MTT for 2015.

Later we decided to extend our research, developing an automated script that allowed

downloading of 160+ AppXs from the US and Italian versions of the Windows Phone Store: the

new set of applications has also been analyzed, thus covering security aspects related to apps

developed with the Windows Runtime (WinRT) technology.

The so obtained categorized vulnerabilities – our freaks – have been elaborated in a second

stage of the study, in order to define a catalog of insecure API usage, that represents the most

complete and accurate public resource on the topic.

Figure 1 – The OWASP Mobile Top 10 Risks for 2014.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 4

M1 – Weak Server Side Controls

This risk is referring to server-side security issues and addresses a mobile-platform agnostic

category of vulnerabilities. Nowadays, back-end systems security can be properly assessed using

standard and consolidated testing methodologies (e.g., OWASP Testing Guide v.4), and using

resources such as the OWASP Top 10 Web Security Risks as a driver while exploring the targets

security.

Server-side security should always be included in the assessment scope when performing a

mobile application penetration test, as a malicious user may not only directly attack back-end

systems (e.g., web services) to steal confidential data – that, in most of the cases, represent

mobile users’ data – but also indirectly attack the mobile app while abusing exposed server-side

functionalities. A hacked back-end could be used as a proxy to attack the user’s app, in order to

extract locally stored data or inducing the victim into revealing confidential information,

combining technical issues with Social Engineering techniques.

During our mobile application penetration testing projects, we noticed that the most relevant

security issues involving back-end systems were logical flaws, often involving application states

“evolution” and input validation issues, such as SQL Injection and Cross-Site Scripting (XSS).

It also should be noted that mobile apps source code analysis may reveal a series of details

concerning the back-end systems, such as hardcoded URLs pointing to Internet-facing testing

or pre-production environments, hardcoded (and “evergreen”) session cookies or valid testing

accounting credentials: these information may represent precious knowledge for attackers and

should never be hardcoded into application code.

M2 – Insecure Data Storage

The second risk refers to applications that store sensitive or confidential data on devices, without

applying any proper encryption techniques. The risk focuses on data confidentiality violation in

case of a malicious app capable to access clear-text files, or physical attacks performed by users

holding a privileged access to the target device file system and the stored information.

A secure mobile app should protect its data, especially if it is required storing:

 Session cookies (Figure 2);

 Account credentials (Figure 3);

 Authentication or authorization tokens;

 User’s personal information – e.g., user’s home and email addresses;

 Any kind other of sensitive, confidential or private data – e.g., credit card data.

Modern mobile platforms implements built-in disk encryption technologies, but these features

do not block attacks at runtime where, for example, a malicious app or user hold a privileged

access to the device file system that can be abused to steal unencrypted data.

.

Figure 2 – Insecure storage of session cookies in the application’s sandbox.

The major mobile platforms also implement strong application security models and introduced

application sandboxing, in order to prevent malicious apps to access other apps local files. It

should be noted that sandboxing mechanisms could be defeated by exploiting system’s

vulnerabilities or jailbreaking a device. For these reasons, local data encryption represents a

crucial security aspect for mobile apps.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 6

Figure 3 - Insecure storage of account credentials in the app’s application settings.

Starting from Windows Phone 8, Microsoft’s mobile platform supports BitLocker disk encryption

technology (AES 128), which is disabled by default and can only be activated with the Exchange

ActiveSync policy RequiredDeviceEncryption or MDM policies, thus further increasing the

importance of data encryption for this specific platform.

Figure 4 – Storage locations that could be adopted by Windows Phone apps.

Figure 4 summarizes the different storage locations where a Windows Phone app may save its

data, while the following tables - divided based on the development technology – detail, for

each area, the physical path on the device and the properties used within application source

code to refer to the corresponding location.

Locations Windows Runtime Apps

Local data store
ApplicationData.Current.LocalFolder - URI - ms-appdata:///local/

C:\Data\Users\DefApps\APPDATA\Local\Packages\%packageName%\LocalState

Roaming

data store

ApplicationData.Current.RoamingFolder - URI - ms-appdata:///roaming/

C:\Data\Users\DefApps\APPDATA\Local\Packages\%packageName%\RoamingState

Temporary

data store

ApplicationData.Current.TemporaryFolder - URI - ms-appdata:///temporary/

C:\Data\Users\DefApps\APPDATA\Local\Packages\%packageName%\TempState

Package installation

Windows.ApplicationModel.Package.Current.InstalledLocation

URI: ms-appx:// and ms-appx-web://

C:\Data\SharedData\PhoneTools\AppxLayouts\{GUID}\

Cache

data store

ApplicationData.Current.LocalCacheFolder

C:\Data\Users\DefApps\APPDATA\Local\Packages\%packageName%\LocalCache

Media Library
KnownFolders.MusicLibrary, KnownFolders.CameraRoll,

KnownFolders.PicturesLibrary, KnownFolders.VideosLibrary

SD Card KnownFolders.RemovableDevices

Local Settings Windows.Storage.ApplicationData.Current.LocalSettings

Roaming Settings Windows.Storage.ApplicationData.Current.RoamingSettings

Local and Roaming Settings are saved in

C:\Data\Users\DefApps\APPDATA\Local\Packages\%packageName%\Settings\settings.dat,

which is a Windows NT registry file (REGF) - and NOT encrypted

Locations Silverlight Windows Phone Apps

Application local

folder
C:\Data\Users\DefApps\APPDATA\{GUID}\Local\

Application

Settings

IsolatedStorageSettings.ApplicationSettings

C:\Data\Users\DefApps\APPDATA\{GUID}\Local__ApplicationSetting

Package

installation

Windows.ApplicationModel.Package.Current.InstalledLocation

C:\Data\Programs\{GUID}\Install\

Cached data C:\Data\Users\DefApps\APPDATA\{GUID}\INetCache\

Cookies C:\Data\Users\DefApps\APPDATA\{GUID}\INetCookies\

SD Card (read only)

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 8

The following table could be used as a driver to identify specific methods and properties that

refer to the creation or opening of files for several storage locations: it can be adopted to locate

code segments capable of storing data, and so evaluate the existence of insecure storage for

confidential information.

Locations Classes, Methods and Properties

Local folders

StorageFolder.CreateFileAsync()

StorageFolder.GetFileAsync()

StorageFolder.GetFilesAsync()

StorageFile.OpenReadAsync()

StorageFile.OpenAsync()

StorageFile.GetFileFromApplicationUriAsync()

StorageFile.GetFileFromPathAsync()

IsolatedStorageFile.CreateFile()

IsolatedStorageFile.OpenFile()

Application or

Roaming

Settings

IsolatedStorageSettings.ApplicationSettings – property

ApplicationData.LocalSettings – property

ApplicationData.RoamingSettings - property

SD Card

(WP 8.1 only)

KnownFolders.RemovableDevices returns a StorageFolder object

that can be sequentially used to read/write data from the SD card

Local database
Identify objects that inherit from System.Data.Linq.DataContext

Verify the existence of reserved data stored in the local .sdf file

It should be noted that data stored in local databases, reside in clear-text within the

application’s sandbox, in files with the “sdf” extension. These databases should be properly

protected by encrypting stored data using OS-provided encryption mechanism, such as the

Data Protection API (DPAPI) – see M6 for more details.

As a final note, developers should adopt the Windows.Security.Credentials.PasswordVault

mechanism for sensitive data storage, such as account credentials.

M3 – Insufficient Transport Layer Security

The M3 risk refers to confidentiality and integrity concerning the app-to-endpoint data

transmission. Common issues related to transport layer security are:

 Communication over an unencrypted channel: clear-text communication (e.g., via HTTP

protocol) can be intercepted by malicious users. Moreover, if an attacker is capable to

performe a Man in the Middle (MitM) attack, he/she can manipulate the traffic sent back

to the app, thus potentially triggering additional vulnerabilities, such as client-side

injections (Figure 5, Figure 6 and Figure 7);

 Communication over a poorly encrypted channel: a poorly encrypted channel is based

on weak cryptographic algorithms. In these conditions an attacker may decrypt the

transmitted data exploiting know algorithms issues;

 Issues related to digital certificates: failures in certificates validation or absence of

certificate pinning.

Figure 5 – Loading of remote HTML login page via http.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 10

Figure 6 – A MitM attack allows a malicious user to manipulate the entire app layout.

Figure 7 – Loading of an external JavaScript file via HTTP protocol.

Windows Phone 8.0 automagically discards invalid certificates and no public APIs are available

to programmatically disable the behavior. Windows Phone 8.1 allows developers to specify

errors to be ignored with

HttpBaseProtocolFilter.IgnorableServerCertificateErrors.Add(): the method accepts

parameters described by the ChainValidationResult enumeration, but only a subset of the

available values can be specified.

Reference Ignorable Not Ignorable

ChainValidationResult

(Enumeration)

Expired Success

IncompleteChain Revoked

WrongUsage InvalidSignature

InvalidName InvalidCertificateAuthorityPolicy

RevocationInformationMissing BasicConstraintsError

RevocationFailure UnknownCriticalExtension

Untrusted OtherErrors

Windows Phone 8.0 platform does not provide any APIs to directly implement pinning

mechanisms. Instead, with Windows Phone 8.1 developers can use the

SocketStream.Information to access StreamSocketInformation.ServerCertificate, which

allows the retrieval of the remote server’s digital certificate: the returned Certificate object

can then be used to get detailed information on the certificate itself.

The following tables summarize the methods and classes that should be carefully audited to

spot vulnerabilities concerning data transmission.

Category Namespaces Classes, Methods and Properties

HTTP

System.Net.Http

HttpClient.DeleteAsync()

HttpClient.GetAsync()

HttpClient.PostAsync()

HttpClient.PutAsync()

HttpClient.GetByteArrayAsync()

HttpClient.GetStreamAsync()

HttpClient.GetStringAsync()

HttpClient.SendAsync()

Windows.Web.Http

HttpClient.DeleteAsync()

HttpClient.GetAsync()

HttpClient.PostAsync()

HttpClient.PutAsync()

HttpClient.GetStringAsync()

HttpClient.SendRequestAsync()

HttpClient.GetBufferAsyn()

HttpClient.GetInputStreamAsync()

TCP and UDP

Sockets
Windows.Networking.Sockets

StreamSocket.ConnectAsync()

SocketProtectionLevel.PlainSocket - property

StreamSocket.UpgradeToSslAsync()

StreamSocketListener - does not support SSL/TLS

DatagramSocket.ConnectAsync()

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 12

Category Namespaces Classes, Methods and Properties

Web

Microsoft.Phone.Controls
WebBrowser.Navigate()

WebBrowser.Source property

Windows.UI.Xaml.Controls
WebView.Navigate()

WebView.Source property

Microsoft.Phone.Tasks WebBrowserTask.Uri property

Windows.System Launcher.LaunchUriAsync(uri)

WebSocket Windows.Networking.Sockets
MessageWebSocket.ConnectAsync() – with ws:// uri scheme

StreamWebSocket.ConnectAsync() – with ws:// uri scheme

XAML Object

Element Usage
-

«Source» property for WebBrowser and WebView

«uri» property for WebBrowserTask

“NavigateUri” for HyperlinkButton

Push Notifications Microsoft.Phone.Notification HttpNotificationChannel(string)

Brutal Approach - Grep for Uri() and look at http:// instead of https://

Digital Certificates Windows.Web.Http.Filters HttpBaseProtocolFilter.IgnorableServerCertificateErrors.Add()

Windows.Web.AtomPub, Windows.Networking.BackgroundTransfer,

Windows.Web.Syndication classes/methods should be reviewed as well

It should be noted that in most cases, the use of https:// instead of http:// allows developers

to properly establish secure encrypted channels.

M4 – Unintended Data Leakage

M4 refers to involuntary data exposure caused by OS or frameworks side-effects. In order to

properly exploit these issues, an attacker is typically required to hold a privileged access to the

target file system or connected network.

Potential sources of information leakage are:

 System caching: OS-level caching may result in data leakage if the app does not delete

critical information stored in the cache when they are no longer necessary;

 Application backgrounding: when an application is backgrounded, data saved or cached

by built-in mechanisms - such as session cookies delivered by the back-end system, or

previously navigated web pages by a web view - should be deleted to avoid private data

theft in case of unauthorized access to the corresponding storage areas (Figure 8);

 System logging: the OS may log sensitive data that could be accessed by malicious users

or apps on device;

 Telemetry frameworks, which expose sensitive data: telemetry frameworks may transmit

data in plain text - and so sniffed by attackers located on the same network segment - or

share reserved information with back-end systems (these system are part of the overall

attack surface).

Figure 8 – Cached data are not automatically deleted by the OS on app deactivation or closing.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 14

The following table summarizes a set of methods, related to application backgrounding, which

should always implement routines to delete cookies and cached, before the interruption of the

app execution.

Conditions Classes, Methods and Properties

Application

Backgrounding and

Closing

Handler for the Application.Suspending event,

typically the OnSuspending() method in App.xaml.cs

Handler for the Application.Deactivated event,

typically the Application_Deactivated() method in App.xaml.cs

Handler for the Application.Closing event,

typically the Application_Closing() method in App.xaml.cs

Handler for the Application.UnhandledException event,

typically the Application_UnhandledException() method in App.xaml.cs

Use of Telemetry

Frameworks
HockeyApp, BugSense, etc.

Dump of App Memory
check for encryption keys or passwords stored as «string» (immutable) object

(.NET’s System.Security.SecureString object is not supported by WP Silverlight | Runtime)

Finally, the following table provides strategies to mitigate common data leakage conditions with

the Windows Phone platform.

Actions Classes, Methods or Properties

Remove cached data

on app closing,

suspension or

deactivation

server-side Cache-Control: no-store

client-side

WebBrowserExtensions.ClearInternetCacheAsync()

WebBrowser.ClearInternetCacheAsync()

WebView - no programmatic way

Remove stored cookies

WebBrowser.ClearCookiesAsync()

WebBrowserExtensions.ClearCookie()

WebView – use HttpCookieManager.GetCookies() + HttpCookieManager.DeleteCookie()

Avoid sensitive data

disclosure (dump of

app’s memory)

Use of byte[] array instead of System.String objects,

and re-assign bytes when the “secret” is no longer necessary

M5 – Poor Authorization and Authentication

M5 refers to security decisions taken by a mobile app without server-side engagement, thus

allowing a malicious user to achieve an unauthorized access to application data or

functionalities. Common issues belonging to M5 are:

 Offline authentication: offline authentication implies the existence of “secret” information

or logic on device, capable to validated user-typed credentials. The solution is prone to

binary attacks, because a malicious user can extract the secret and the bypasses the

authentication mechanism;

 Issues related to password complexity: use of weak password by design, such as 4 digits

PIN;

 Absence of anti-guessing or brute forcing mechanisms: these issues can be related to

both app or back-end authentication mechanisms;

 Predictable authentication/authorization tokens: generation of authentication or

authorization tokens based on predictable user or device information. An attacker may

easily forge valid tokens and bypass implemented security mechanisms – both on client

or server-side (Figure 9);

 Authorization issues on apps critical functions/data access: an application may

implement weak authorization mechanisms, which could be exploited to access premium

functionalities or steal confidential data (Figure 10 and Figure 11). In the Windows Phone

ecosystem, a common issue is represented by the lack of proper client-side authorization

mechanisms within the OnNavigatedTo() method, which refers to XAML pages that may

expose reserved functionalities.

Figure 9 - Client-side generation of an authorization token.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 16

Figure 10 – Example of contacts backup application affected by an authentication issue.

Figure 11 – Contacts backup app does not implement any authentication mechanism on backup download.

The following table highlights a series of Windows Phone APIs commonly adopted to generate

authentication/authorization tokens, which should be located within an app and carefully

audited.

Identification Data Namespaces Classes, Methods and Properties

Device Name Microsoft.Phone.Info DeviceStatus.DeviceName

Hardware

Identification
Microsoft.Phone.Info

DeviceExtendedProperties.GetValue(”DeviceName”)

DeviceExtendedProperties.GetValue(”DeviceUniqueId”)

Hashing Functions

Windows.Security.Cryptography

SHA1Managed, SHA256Managed,

SHA384Managed and SHA512Managed classes

(or any other 3° party libraries implementing these

functions)

Windows.Security.Cryptography.Core HashAlgorithmProvider.OpenAlgorithm()

Geo Location

Coordinates

Windows.Devices.Geolocation Geolocator / Geoposition / Geocoordinate

System.Device.Location GeoCoordinateWatcher / GeoPosition / GeoCoordinate

It is a common practice to use the DeviceExtendedProperties.GetValue(”DeviceUniqueId”)

as a unique identifier for an app on a device. If an app requires a “real” UUID to identify itself

with a remote back-end (identify, not authenticate!) we suggest the use of

HostInformation.PublisherHostId property instead, because the corresponding string is

unique per device and per publisher, while the

DeviceExtendedProperties.GetValue(”DeviceUniqueId”) is unique only per device.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 18

M6 – Broken Cryptography

M6 refers to the risk associated with both the use of weak cryptographic algorithms and

processes in the encryption of data stored on device or in transit.

The most common issues related to the adoption of weak cryptography are:

 Weak standard cryptographic algorithms: an app may use cryptographic algorithms that

are weak or are affected by intrinsic vulnerabilities, thus allowing an attacker to violate

data confidentiality;

 Custom algorithms: the use of custom encryption algorithms is normally discouraged in

favor of strong community-approved cryptographic solutions;

 Exotic “encryption” strategies: for example the use of encoding (e.g., serialization) instead

of encryption. Encoding is just a data representation and not a method to guarantee

data confidentiality (Figure 12).

When considering a data encryption processes, the most relevant issues are:

 Hardcoded encryption keys: if an encryption key is hardcoded in app’s code, an attack

against application binaries allows the extraction of the secret, and the decryption of the

data (Figure 13Figure 13);

 Encryption keys stored with the encrypted data: an attacker with access to the

application sandbox can retrieve both the encrypted data and the key for the decryption;

 Encryption keys stored in an unsafe areas: keys stored in unsafe areas (e.g., file system’s

shared locations) could be easily retrieved by malicious apps or attackers having access

to these locations.

The following table summarizes classes and methods that should be identified while assessing

mobile app’s source code, in order to spot the existence of issues in the encryption process or

in the use of cryptography.

Functions Namespaces Classes, Methods and Properties

Hashing
Windows.Security.Cryptography

SHA1Managed, SHA256Managed,

SHA384Managed and SHA512Managed classes

(or any other 3° party libraries implementing these functions)

Windows.Security.Cryptography.Core HashAlgorithmProvider.OpenAlgorithm()

Symmetric

Encryption

System.Security.Cryptography.Core CryptographicEngine.Encrypt() | Decrypt()

System.Security.Cryptography AesManaged.CreateEncryptor() | CreateDencryptor()

Data Encoding

Windows.Security.Cryptography
CryptographicBuffer.[Encode | Decode]ToBase64String()

CryptographicBuffer. [Encode | Decode]ToHexString()

System.Text Encoding.UTF8

System Convert.ToBase64String() | Convert.FromBase64String()

Plenty of third party encryption libraries (e.g., Bouncy Castle for .NET) implement similar algorithms

Figure 12 – Use of serialization instead of an encryption mechanism for credential storage.

Figure 13 – Hardcoded symmetric encryption key.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 20

Developers should avoid storing any critical data on device, even if encrypted. However, if this

represents a key requirement, the information must be stored adopting built-in encryption

algorithms. Windows Phone exposes the Data Protection API (DPAPI), which guarantees OS-

level data encryption. The following table lists the classes and methods that allow developer to

safely encrypt data.

Platform Namespaces Methods

WP 8.0 System.Security.Cryptography
ProtectedData.Protect()

ProtectedData.Unprotect()

WP 8.1 Windows.Security.Cryptography

DataProtectionProvider.ProtectAsync()

DataProtectionProvider.UnprotectAsync()

DataProtectionProvider.ProtectStreamAsync()

DataProtectionProvider.UnprotectStreamAsync()

M7 – Client Side Injection

M7 represents a class of security issues where an interpreter (e.g., a SQL querying engine, a

system shell, an XML parser) is fed with untrusted data. Untrusted data is used by the vulnerable

application to generate a command, which is then delivered to the corresponding parser. If no

proper validation routines are in place, an attacker may inject special characters and statements

to change the semantic of the altered command, affecting the confidentiality, integrity or

availability of the data handled by the targeted interpreter and underlying system.

Client-side injections are issues that involve interpreters located on the mobile device – the

client side. The impact of an injection attack depends on the criticality of stored data, and on the

specific category of injection.

In order to spot client-side injections it is necessary to map the sources of untrusted data, and

then review how these inputs are handled by the underlying parsing routines. Example of

untrusted data sources for the Windows Phone platform are:

 Input from network – e.g., web responses or any other network communications;

 Bluetooth or NFC;

 Inter Process Communication (IPC) mechanisms - e.g., via extensions/protocols

registration or toast message notifications;

 Files accessed from SD card – which is a shared storage area;

 User typed input – e.g., via UI, speech to text, camera (e.g., QR code), USB data;

Once identified the sources of potential untrusted data, the following tables can be adopted as

a driver to address potential unsafe usage of APIs, which may lead to client-side injection

vulnerabilities, such as Cross-Site Scripting (XSS - Figure 14), SQL Injections and XML Injections.

Interpreters Namespaces Classes, Methods and Properties

HTML/JavaScript

Microsoft.Phone.Controls

WebBrowser.NavigateToString()

WebBrowser.InvokeScript()

WebBrowser.IsScriptEnabled = true (property)

Windows.UI.Xaml.Controls

WebView.NavigateToString()

WebView.InvokeScript() | InvokeScriptAsync()

WebView.NavigateToLocalStreamUri()

WebView.NavigateWithHttpRequestMessage()

XML

System.Xml.Linq XDocument.Load()

System.Xml
XmlReaderSettings.DtdProcessing =

DtdProcessing.Parse

XAML System.Windows.Markup XamlReader.Load()

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 22

Interpreters Third Parties Libraries Classes, Methods and Properties

SQL

SQLitePCL SQLiteConnection.Prepare()

SQLite-Net-WP8

Query() / Query<T>() / QueryAsync<T>()

Execute() / ExecuteAsync()

ExecuteScalar<T>() / ExecuteScalarAsync<>()

DeferredQuery() / DeferredQuery<T>()

FindWithQuery<T>()

CreateCommand()

CSharp-SQLite IDbCommand.CommandText (property)

SQLiteWinRT
Database.ExecuteStatementAsync()

Database.PrepareStatementAsync()

Figure 14 – Example of vulnerable usage of the WebBrowser.NavigateToString() method.

Developers should always intend all inputs as evil and implement proper input validation

routines, adopting positive validation strategies, in order to effectively mitigate attacks, such as

injections.

Client-side SQL Injection issues can be effectively blocked adopting parameterized queries

instead of concatenating strings with user-controlled input.

Finally, apps should not enable the DTD parsing features when working with XML documents,

because it could be abused to conduct attacks such as XML External Entity (XXE).

M8 – Security Decisions via Untrusted Inputs

Inter Process Communication (IPC) mechanisms extend an application’s attack surface and

represent sources for untrusted inputs and unauthorized actions. Starting from version 8,

Windows Phone provides support to IPC with file and UR associations.

File and URI associations allow the automatic execution of an app when another app launches a

registered file type or URI. In order to be executed, an app must register either a file

type/extension or an URI scheme in its manifest file, as summarized in the following tables –

note that differences exist between WP 8.0 and WP 8.1 platforms.

IPC Mechanism Supported Platform and Manifest Specifications (WMAppManifest.xml)

File Association

<Extensions>

 <FileTypeAssociation Name="name" TaskID="_default" NavUriFragment="fileToken=%s">

 […]

 <SupportedFileType>

 <FileType ContentType="application/sdk">.test1</FileType>

 <FileType ContentType="application/sdk">.test2</FileType>

 </SupportedFileTypes>

 </FileTypeAssociation>

</Extensions>

email attachment, SD cards, website via IE, WebBrowser/WebView,

NFC-enabled devices or another app from the Store (Launcher.LaunchFileAsync)

URI Association

<Extensions>

 <Protocol Name="luca" NavUriFragment="encodedLaunchUri=%s" TaskID="_default" />

</Extensions>

click here (IE/WebBrowser/WebView),

other apps via Launcher.LaunchUriAsync(“luca:..”) or NFC-enabled devices

IPC Mechanism Supported Platform and Manifest Specifications (package.appxmanifest)

File Association

<Extensions>

 <Extension Category="windows.fileTypeAssociation">

 <FileTypeAssociation Name="test3">

 <DisplayName>My test 3</DisplayName>

 […]

 <SupportedFileTypes>

 <FileType ContentType="image/jpeg">.test1</FileType>

 </SupportedFileTypes>

 </FileTypeAssociation>

 </Extension>

</Extensions>

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 24

URI Association

<Extensions>

 <Extension Category="windows.protocol">

 <Protocol Name="luca" m2:DesiredView="useLess"/>

 <Logo>images\logo.png</Logo>

 <DisplayName>My uri has my name</DisplayName>

 </Extension>

</Extensions>

A third IPC mechanism is based upon the undocumented Shell_PostMessageToast method

(ShellChromeAPI.dll), which can be abused to perform Cross Application Navigation Forgery

attacks. The undocumented feature has been identified by cpuguy from XDA, while the term

“Cross Application Navigation Forgery” has been coined by Alex Plaskett and Nick Walke from

MWR.

Basically a malicious app can use the Shell_PostMessageToast method to send a toast

message that, once tapped by the victim-user, implies the launch of an attacker-controlled

XAML page belonging to the target app (Figure 15): an attacker may tamper parameters passed

to the OnNavigatedTo() and so attack the code behind logic.

Figure 15 – Demonstration of a Cross Application Navigation Attack using the Native Toast Launcher utility.

While performing a security review of a Windows Phone mobile app, the methods listed in the

following table should be carefully audited to identify eventually input validation and

authorization issues. In fact, attackers or malicious apps on the target device can trigger their

execution under certain circumstances. The impact of the exploitation depends upon the

specific implementation and handled data by the targeted methods.

IPC Mechanism Platform Namespaces Classes, Methods and Properties

URI Associations

WP 8.0 System.Windows.Navigation overridden UriMapperBase.MapUri() method

WP 8.1 Windows.Ui.Xaml.Application
OnActivated() - ActivationKind.Protocol

property

File Associations

WP 8.0 System.Windows.Navigation overridden UriMapperBase.MapUri() method

WP 8.1 Windows.Ui.Xaml.Application OnFileActivated() method

(Toast Message) WP 8.0 System.Windows.Navigation
OnNavigatedTo()

(NavigationContext.QueryString)

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 26

M9 – Improper Session Handling

M9 refers to the existence of insecure app sessions life cycle, and embraces issues related to

both client and server-side session handlers. Common issues belonging to M9 are:

 Failure to invalidate session on the back-end: mobile apps logout mechanisms often do

not involve server-side sessions invalidation. Instead these functions just invalidate

cookies stored on the device (Figure 16);

 Lack of adequate timeout protection: back-end systems should force session timeout in

order to avoid reuse of stolen cookies. The specific requirement refers to server-side

components, even if a session (forced) timeout should be introduced within the app as

well;

 Insecure tokens creation: client-side generation of authentication or authorization tokens

should be avoided because it may rely on predictable information or logic that could be

easily reproduced by attackers;

 Failure to invalidate sessions on app closing or deactivation: on app closing,

backgrounding or suspension, session cookies should be cleaned and invalidated

(server-side) to avoid the persistence of confidential data onto the device’s file system,

thus potentially exposed to data leakage.

Figure 16 – The method does not involve the back-end in the logout process.

Both developers and security professionals should carefully analyze target apps and identify

session handling routines and cookies usage, while ensuring that these mechanisms delete the

tokens when they are not needed.

The following is a set of classes that should be carefully audited during code analysis:

 System.Net namespace

– System.Net.Cookie

– System.Net.CookieCollection

– System.Net.CookieContainer

– System.Net.HttpWebRequest.CookieContainer

– System.Net.HttpWebResponse.Cookies

 Windows.Web.Http namespace (WP 8.1 only)

– Windows.Web.Http.HttpCookie

– Windows.Web.Http.HttpCookieCollection

– Windows.Web.Http.HttpCookieManager

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 28

M10 – Lack of Binary Protections

A mobile application should protect itself from binary attacks, which have the objective to

analyze the application behavior and exchanged data with back-end systems, reverse the app’s

internals (in order to steal intellectual property) or modify and redistribute the app itself as a

malware to fraud users. Moreover, the lack of binary protections may allow a cracker to easily

bypass premium function protections, thus causing a financial damage to the app’s software

house. In order to avoid these risks, a mobile application should implement a series of binary

protections, such as the following:

 Certificate pinning: certificate pinning mechanisms slow down HTTPS traffic analysis,

because the attacker is required to unpin the certificate, by modifying the target app,

before starting communication traffic investigation. Refer to M3 for further technical

details on certificate pinning;

 Code obfuscation: app bytecode can be trivially decompiled in source code using public

available tools such as .NET Reflector or JetBrains dotPeek. Developers should therefore

apply proper bytecode obfuscation techniques in order to mitigate the risk of intellectual

property theft. It should be noted that even if an app does not implement any reserved

business logic, code obfuscation is still suggested in order to further slowdown client

analysis from malicious users;

 Anti-debugging and runtime-tampering detection mechanisms: anti-debugging and

runtime-tampering detection routines usually require the attacker to spend further effort

in application analysis, because these mechanisms must be identified and then disabled

by modifying both the analysis environment and the app’s code. Code obfuscator

utilities often implement this kind of mechanisms (e.g., dotFuscator and ConfuserEx);

 Code encryption: Windows Phone Store apps are downloaded as encrypted files and

then decrypted during the deployment phase. In these conditions, a privileged access to

the device file system allows clear-text apps code extraction. Therefore custom app code

encryption should be implemented as a further layer of security against reverse

engineering. Code obfuscation utilities introduce code obfuscation mechanisms as well.

In order to further increase apps security, it should be configured a specific option that prevents

app installation on SD cards (Figure 17). Moreover, The OWASP Reverse Engineering and Code

Modification Prevention Project provides architectural principles to secure design your apps.

Figure 17 – SD card installation can be disabled via specific app’s manifest option.

Conclusions

The paper illustrated our research results concerning the analysis of the security of 200+

applications targeting the Windows Phone platform, developed with both Silverlight and

Windows Runtime technologies.

During the investigation, examples of vulnerable code have been collected and mapped to the

corresponding MTT 2014 entries. The analysis also allowed the definition and categorization of

insecure APIs usage, which represents the most complete and accurate public catalog in the

genre - so a precious reference for both developers and security professionals.

Finally, it should be noted that substantial part of our study on APIs security should be valid for

the Universal Apps targeting Windows Phone 8.1 and Windows 10 for Phone platforms.

The Windows Phone Freakshow – Hack in The Box Amsterdam 2015 30

References

 MSDN – API References for Windows Runtime Apps

 https://msdn.microsoft.com/en-us/library/windows/apps/xaml/br211369.aspx

 Certificate Pinning in Mobile Applications

 http://www.slideshare.net/iazza/certificate-pinning-in-mobile-applicationsprosconsv10

 Input Validation Cheat Sheet

 https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet

 Native Toast Notification Launcher

 http://forum.xda-developers.com/windows-phone-8/help/qa-native-toast-notification-

launcher-t2980873

 MWR’s Navigating a Sea of Pwn?

 https://labs.mwrinfosecurity.com/system/assets/651/original/mwri_wp8_appsec-

whitepaper-syscan_2014-03-30.pdf

 OWASP Mobile Jailbreaking Cheat Sheet

 https://www.owasp.org/index.php/Mobile_Jailbreaking_Cheat_Sheet

 OWASP Reverse Engineering and Code Modification Prevention Project

 https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification

_Prevention_Project

 Windows Phone 8.1 Security Overview

 https://www.microsoft.com/en-us/download/details.aspx?id=42509

 Windows Phone 8 Application Security

 http://erpscan.com/wp-content/uploads/2013/06/Windows-Phone-8-application-

security-slides.pdf

