
Supervising the Supervisor: Reversing
Proprietary SCADA Tech

Jean-Baptiste Bédrune
jbbedrune at quarkslab.com

Alexandre Gazet
agazet at quarkslab.com

Florent Monjalet
fmonjalet at quarkslab.com

May 29, 2015

Quarkslab

Abstract
SCADA1 systems can be found in the core of many critical infras-

tructures, such as nuclear plants, water distribution circuits or alarm
systems.

This article is about the security study we carried out on recent,
proprietary and state-of-the-art SCADA technologies. We will mainly
focus on the methodology followed to reach our goals, as well as on some
techniques we used. This will cover fuzzing, black-box and white-box
reverse-engineering. We will talk about the reverse-engineering of the
industrial protocol, a part of the protocol stack of a SCADA supervisor
and the PLC2 firmware.

This study revealed multiple security breaches in the assessed technolo-
gies and allowed to reveal most of this protocol’s cryptographic system. To
illustrate one of these vulnerabilities, we will present an effective attack.

Disclaimer: The terms used to refer to the studied technologies are
deliberately imprecise.

1 Introduction
1.1 Motivations
In response to some recent attacks on critical industrial systems (for example
Stuxnet[8], that managed to put out of order uranium centrifuges in Iran, or
more recently Havex, a RAT targeting SCADA system), some vendors have
done, and are still doing, a lot of efforts to raise their products’ security and
resilience against malicious attacks.

The history of (in)security in SCADA systems makes the analysis of new,
more secured systems very interesting.

1Supervisory Control And Data Acquisition, see section 1.2 for more information.
2Programmable Logic Controller

1

1.2 What is a SCADA System?
Before getting to the main topic of this article, this paragraph quickly presents
what SCADA systems are and the purpose of some of the components we will
be dealing with in this article.

1.2.1 Definitions

The SCADA acronym refers to a subset of what is called “industrial control
systems” (ICS).

An ICS is an information system that is aimed at controlling physical systems:
sluice gates, motors, temperature or pressure sensors, etc. They can notably be
found in power plants, water distribution circuits, alarm or access control systems,
video monitoring, etc. Actually, many systems can fit into this definition.

The SCADA part refers to the monitoring and control of the physical process.

1.2.2 Components

The SCADA part of an ICS is mainly composed of three elements:

Programmable Logic Controllers (PLC) These devices embed a program
transforming electrical inputs into electrical outputs (for example adjusting
a rotation speed according to a temperature). These devices usually contain
ARM or MIPS type CPUs, and sometime have a real OS installed. The
way outputs are computed from inputs is defined by a user program that
can be modified at any time. It is the main difference with a more classical
electronic circuit.

Programming stations used to create and download the user program on the
PLC.

Supervisory stations (also called HMI, for Human Machine Interface) are
meant to monitor the state of the physical process and to trigger actions
(such as closing a sluice gate, change the rotation speed of a motor, etc.). It
is a kind of abstraction of the underlying physical process. The monitoring
and actions are done through the reading and writing of state variables
stored in the PLCs, thanks to a dedicated industrial protocol.
These stations often consist in a graphical interface on which measures
and figures will be shown, and on which some buttons will allow to trigger
actions or adjust physical settings.

1.2.3 Particularities

Industrial devices, and particularly PLCs tend to be in function for many years
(some can run for 30 years). They also are very expensive and complicated to
replace: the devices themselves are quite expensive, but changing them also means
reprogramming all the new ones and integrating them to an existing system, or
rebuilding it from scratch. One of the consequences of this phenomenon is to
find a lot of old equipment in industrial systems.

When they are running, some ICSs (particularly the most critical ones) are
very delicate to update. When there is no complete duplication of the system, it
has to be stopped for update. When the duplication degree allows to remove

2

SCADA HMI Station

Hmi process

Hmi process
(when multiple

instances)

Shared
Memory

TCP
Broker

PLC

Industrial
protocol Firmware

Figure 1: Simplified SCADA Architecture

some components of the system without stopping it, it is still necessary to
ensure that the update does not disrupt the system. A simple update on these
systems can become a very delicate problem, and it is therefore quite common
to encounter industrial systems that are not kept up to date, even for major
security updates.

Because of their critical nature, even a denial of service on one PLC can
result in a serious loss (of money, products or gear). In general, the priority
is to avoid any situation that could modify the usual behaviour of the device;
authenticity and integrity are often more important than confidentiality of
data or communications in this kind of network. These constraints in term of
stability and security contrast with the field reality: often old and not up to date
equipment. This is why the robustness and stability of industrial equipment is a
priority.

1.3 The Target of Study
We chose to focus on a popular industrial equipment vendor, mainly selected for
its market share in Europe and its efforts to raise its product security.

We studied one of their most recent PLC, their SCADA (supervision) software
(referred to as HMI in what follows) as well as two versions of their proprietary
industrial protocol. Figure 1 shows how these elements are organized.

A first PLC network scan reveals that only two TCP services are exposed:
a web server (HTTP and HTTPs, both being configurable and deactivable)
and a TCP server for the industrial protocol. This type of protocol allows the
supervision (client side) and the PLC (server side) to exchange information as
well as reprogramming the PLC. It can be carried over TCP or various serial
buses.

Many vulnerabilities that were published for this kind of equipment are related
to the embedded web server, however very few directly affect the industrial
protocols (and even less when they are proprietary). The advantage of directly
looking at the industrial protocol is that it is highly improbable (and often
impossible) to disable the associated service: without it, the PLC becomes much
less interesting. In contrast, the web server is totally optional (although quite
useful) and can be disabled. For example, on the PLC we studied, it is disabled
by default.

This is why we chose to focus on the industrial protocol, here carried on TCP.
There are two versions of it:

3

IHM

IHM

IHM

IHM
Project

IHM
Project

IHM
Project

Shared
Memory

TCP
Broker Fuzzer worker

Fuzzer worker

Fuzzer worker

Radamsa
TCP/IP

Fuzzes
valid

packets
with

Figure 2: Fuzzing architecture

• the older one, that had no (or almost no) security mechanism: this one is
rather well known by the community;

• the newer one, on which we focused the most, that implements some actual
security mechanisms (that will be studied later), but almost no public
resource is available.

2 Fuzzing a Poorly Known Protocol
In order to get familiar with the products of the vendor we chose, we decided
to begin by implementing a part of the older protocol and then fuzz the HMI
with a “mock” PLC (a Scapy program) that speaks this protocol. The latter has
the advantage of being relatively well known by the community, which greatly
facilitates its implementation.

2.1 Fuzzing Architecture
As said before, the goal is to act as a fake PLC to fuzz the HMI, that is to say
sending it malformed packets, hoping to trigger an unexpected behaviour.

The fuzzing architecture in itself (shown in Figure 2) is relatively simple:

• Multiple HMI processes run on a VM.

• Multiple workers of a same fuzzer run on another VM.

• The HMI being the client of the communication, we have to ensure it
connects to the fuzzer. This is done by configuring the HMI project files
accordingly.

• The fuzzer is a Scapy legitimate client implementation, whose payloads
are fuzzed with radamsa[1].

That said, a trick is involved here: the HMIs do not directly communicate
with the fuzzer. If it does not prevent from analyzing a crash provoked, it is
however way harder to retrieve the network capture that caused it. Indeed, the
TCP Broker do not offer any documented (or easy) way to know which HMI
instance uses which TCP connection.

To solve this problem, we had to find out how to associate a network com-
munication to an HMI process PID. We did not find any way to change the
destination TCP port of the communication (it cannot be changed in the HMI

4

project) and the source port does not give any information on the PID that uses
the TCP connection (because of the TCP Broker).

A trick based on IP aliasing has finally been used: each project is configured
to connect to a different IP address3 and the workers are configured to listen
on all these IPs on the same network interface. With this solution, the script
starting and catching the HMIs crashes on the client side generates HMI project
files with different IPs, and is able to associate an HMI PID with the IP of the
project that was passed as an argument to it. It then asks to the fuzzer the last
capture associated to this IP address. This capture is necessarily the one that
made the HMI crash, since all the HMIs started at a given moment connect to
distinct IPs.

This allowed us to put up a fuzzing architecture where resources of each
VM are used at their best and where it is possible to run n VMs containing i
HMI processes each and m VMs running j workers, for all m, n, i and j such as
n ∗ i = m ∗ j.

2.2 Results
After a very short time (around 5 minutes of fuzzing a single process) the first
crash occurred.

It was caused by an improper check on a bound, allowing to access an
arbitrary offset in an object table. A virtual method of the accessed object is
then called by the program. The crash happens during the negotiation part of
the protocol, in the first packets.

Whether this bug is exploitable or not has not been confirmed yet, but it can
at least make an HMI crash with 3 packets, without any kind of authentication
necessary. In this protocol, the HMI is the client and the PLC the server. To
perform this attack, it is necessary to succeed in intercepting a TCP session
establishment and answer in place of the PLC with the spurious packets. That
said, another manipulation allows to easily reset the TCP connection, making
things a lot easier.

We since reported it to the vendor and it has been patched by the vendor.

3 Reverse-engineering of a proprietary protocol
Once we got a grasp on the architecture, we chose to start the study of the new
version of the protocol. This one offers password based authentication giving
access to different levels of privilege on the PLC (read/write/reprogram, in a
rough approximation). Very few public work exist on this version of the protocol;
it seems interesting to audit it to ensure that it is as secure as it is meant to be.

3.1 First Approach: Black-Box Analysis
The studied protocol is not text based. Facing an unknown protocol and many
megabytes of DLLs, we choose to start the study using black-box analysis. In
practice, it means we studied the content of network captures, specially crafted
using the PLC and the IHM to exhibit specific features of the protocol.

3The PLC IP address offset can easily be retrieved (hence changed) in an HMI project file.

5

The approach we used relied on differential analysis (inspired by [7] and [2])
Thanks to a tool that allows to realign the hex-dumps of packets (hexlighter[4])
and to highlight the differences between two consecutive packers, we learn a lot
on the protocol’s structure.

Let us take a test sample where the supervision is supposed to read all the
PLC’s input and output bits, while we make them vary by changing the input
voltages. In this example, we will only look at the answers from the PLC to the
supervision.

Hexlighter allows (amongst other features) to color the hex-dumps in a way
that differences stand out. The result is hardly readable on these printed pages,
thus a graphical representation replacing each byte by a colored square has been
proposed. Figure 3 shows the result of the technique by filtering only the answers
fro the PLC:

• Each line represent packet’s payload (roughly 110 bytes here)

• A white square is used if the byte is identical to the same one in the
previous line (packet).

• A black square represent a lake of value (for example when a line is shorter).
They are not used in this example.

• A green square represent a difference with the previous line (packet).

• The brighter the green color is (a gray in a paper print), the greater the
difference is (in absolute value).

• In the bottom figure, each line is compared to the first one rather than to
the previous one.

With the representation, many information clearly stand out:

• A stable state (the packet’s form does not vary anymore) is reached at the
fourth packet sent (these packets are not shown on the figure for clarity
purpose). We can deduce that the first three packets may be part of a sort
of handshake, the other ones are the communication’s body. Let us forget
the handshake for now.

• A sequence number is clearly visible at offset 12 of all the packets (the size
of this field will be verified by letting the value increase until it is reset to
0). On figure 3, it takes the form of a vertical line at offset 12 (slightly
shaded on the bottom figure as the difference with the sequence id of the
first packet grows with time).

• A second sequence number appears at offset 73. This one grows by steps
of 2; thus the gradation more pronounced on the bottom figure.

• At the end of each packet, a 32-byte field with high entropy differs greatly
for all packets. This field strongly suggests the presence of cryptography,
possibly a HMAC or a hash.

• One byte (actually a single bit) varies in the middle of some packets. These
variations are coherent with the I/O variations applied to the PLC during

6

Figure 3: Representing differences between successive similar packets
Each line represents one packet. A the top, difference with the previous packet,

at the bottom, difference with the first packet.

the capture; we deduce that these fields represent the PLC variables read
by the supervision. The green lines in the middle of packets on the bottom
figure represent the time lapse where a variable value is different from its
value in the first packet.

Looking closer and comparing the packets in different ways (for example the
fifth packet from multiple different connection), one can deduce the semantics of
many fields. Each parameter change (write instead of read, value modification,
new session, etc.) tends to reveal its impact in the packets diffs. This method’s
key to success is to be able to easily associate a parameter change with its impact
in the network traffic.

3.2 White-Box Analysis
Black-box analysis have limitations; it allowed us to quickly identify and recover
the semantics of interesting fields from the protocol; however some questions
cannot be answered without a step of reverse engineering on the binaries that
implement the protocol. This is especially true for the high entropy 32 byte field;
for now we can only suspect a HMAC or a hashing algorithm is implied. Our
main objective is to discover its origin and how it is generated.

The easiest way is to start the analysis of the supervision software; it runs on
a well-known, easy to instrument (contrary to the PLC), x86 Windows platform.

7

The first issue we encountered was the complexity of the whole program:
multiple processes communicate through shared memory pages, they are heavily
multi- threaded, rely on asynchronous events, and embed dozen of DLLs whom
names are often not really evocative.

3.2.1 Tracing the Data

The first naive approach we used was to trace data going up from the recv
system call up to the verification of the field we were interested in. The many
copies of the read buffer, the way they are exchanged between the different
processes and their asynchronous nature make both static and dynamic analysis
difficult. We did not spent to much time on this method as it turned out to be
quite inefficient. Nevertheless, it allowed us to discover many interesting code
paths and to identify the specific process responsible for the verification of the
suspect field (not yet the specific function though).

Tracing the whole program, or even the whole system and then using tainting
could have been an interesting approach, however it required heavy instrumenta-
tion and we can find shortcuts.

3.2.2 Detecting Cryptographic Algorithms

We can make an educated guess that the 32 bytes we are interested in imply,
one way or another, some sort of hash algorithm; may it be for message integrity
(however a size of 32 bytes seems a bit disproportionate), or a HMAC-like feature
used to ensure authenticity.

The usual and quick method to find this kind of algorithms is to look for
the constants that characterize them in the binaries. For that purpose, we
ran signsrch[6] on all the DLLs used by the IHM while it is connected to the
PLC. One of them stood out (let us call it hmi_core.dll)), here is the output
produced by signsrch:

offset num description [bits . endian . size]
--
xxxxxxxx 1036 SHA1 / SHA0 / RIPEMD -160 initialization [32. le .20&]
xxxxxxxx 2053 RIPEMD -128 InitState [32. le .16&]
xxxxxxxx 876 SHA256 Initial hash value H (0 x6a09e667UL) [32. le .32&]
xxxxxxxx 1016 MD4 digest [32. le .24&]
xxxxxxxx 1299 classical random incrementer 0 x343FD 0 x269EC3 [32. le .8&]
[...]
xxxxxxxx 1290 __popcount_tab (compression ?) [..256]
xxxxxxxx 874 SHA256 Hash constant words K (0 x428a2f98) [32. le .256]
xxxxxxxx 894 AES Rijndael S / ARIA S1 [..256]
xxxxxxxx 897 Rijndael Te0 (0 xc66363a5U) [32. be .1024]
xxxxxxxx 899 Rijndael Te1 (0 xa5c66363U) [32. be .1024]
xxxxxxxx 901 Rijndael Te2 (0 x63a5c663U) [32. be .1024]
xxxxxxxx 903 Rijndael Te3 (0 x6363a5c6U) [32. be .1024]
xxxxxxxx 915 Rijndael rcon [32. be .40]
[...]

- 18 signatures found in the file in 7 seconds

The main suspect SHA-256 is found, as well as other hash and encryption
algorithms (especially AES, we will come back on this later).

Setting up a breakpoint on the sha2_process function of the SHA-256
implementation in hmi_core.dll, one can verify that this function is actually
called during the communication, and is even called each time a packet is sent
or received.

8

Back to static analysis, one can find the SHA-256 functions are used to
compute a HMAC. Debugging the program gave us further information, the
packet’s payload is passed as input to the HMAC algorithm alongside what can
be called a session key of 24 bytes. Moreover, for each packet, the HMAC output
matches wit the 32 bytes with high entropy located at the end of the packet.

Using a HMAC for each packet allow to ensure packet authenticity as the
key is specific to the session and exchange in a secure (confidential) way. We
have made an important progress here, now the question is where does this key
come from? How is it exchanged?

3.3 Uncovering the Cryptosystem
3.3.1 Session Key Generation

Luckily for us, finding the generation of the session key was a matter of few
breakpoints on write to follow the interesting buffers.

Identifying the origin of the session key, generated by a PRNG, unveiled a
first major issue: the output of the PRNG doesn’t seem random at all. Indeed,
the PRNG is not seeded with a proper entropy source; contrary to what is
expected, the seed is a constant buffer. These findings are later confirmed by
the fact that the sequence of generated session keys is always the same for a
given execution of the supervisory software. In this situation it becomes possible
to brute-force this key in a very short time-lapse (we simply generate the session
key sequence) and then to steal an already authenticated session thus completely
bypassing the password-based authentication. An implementation of this attack
is proposed in section 4.

3.3.2 Session Key Exchange

The attack based on the biased PRNG is an interesting first step however it is
an implementation error, quite easy to fix, thus let us continue to analyze the
cryptosystem. The next question is how the HMI provides the session key to
the PLC.

Back to the network capture analysis, we quickly identify the packet that
seems to contain the session key. Here is the logic:

• The first packet that is sent by the supervision is always the same (except
for the sequence id) and is sent before the generation of the session key.

• The PLC answer is constant, except for 3 scattered bytes and a block of
20 bytes that are always different

• The second packet from the supervision always vary in a signicative way
from one session to another. A block of 132 bytes is the most interesting;
it’s the only block that is large enough to contain the session key (either it
is encrypted or encoded).

• The PLC answer is only made of an applicative ack.

• The third packet sent by the client (supervision) is authenticated with a
HMAC.

• The same is true for the third packet sent by the server (PLC).

9

It seems obvious that the session key is actually exchanged in the second
packet sent by the client.

As a reminder, an implementation of AES is present in hmi_core.dll. No
asymmetric encryption algorithm being detected in the DLL (at least based
on simple constants matching), AES thus becomes a candidate of choice for
exchanging secrets. Debugging the HMI process one can confirm that AES
related functions are actually called when the suspicious second packet is forged.

Back to static analysis, we have been able to reconstruct the mode of operation
from the implementation: it is an AES 128 GCM (close to a CTR mode for the
sake of simplicity). The idea behind CTR mode of operation is to xor the clear
text with a keystream that is generated by deriving the IV to get an arbitrarily
long bytes stream (the keystream), each derivated IV being then ciphered by
block of 128 bits (for AES 128).

With the knowledge of the key (it can be dynamically recovered by debug-
ging the HMI) we are now able to decipher the session key used for a given
communication. Thus one can verify that the session key is indeed ciphered with
AES 128 GCM (alongside other data) and the encrypted data are the last 72
bytes from the larger 132 bytes field previously identified.

3.3.3 First Shared Secret Exchange

For the record, here is what we know:

• The client of the protocol is authenticated with a password (the mechanism
will not be presented in this article but is considered so far as reliable).

• A HMAC associated with a session key ensures that the client that au-
thenticated is the one that is sending the packets (starting with the third
one)

• A session key is generated on supervision side, then encrypted with AES
and sent to the PLC.

• How does the PLC retrieve the AES key necessary to decipher the session
key?

We reiterate over the same method as previously explained: mixing static
and dynamic analysis we quickly isolate the part of the protocol that could be
in charge of that exchange: the suspects are the first 60 bytes from the larger
132 bytes field previously identified.

Correlating these data with the ones manipulated by the process prior to the
AES encryption, we locate the part of the code that seems to “encrypt” the key.

To our great surprise, the code that perform this encryption is heavily
obfuscated; at the time this article is written, its analysis is still a work in
progress.

3.3.4 Conclusion on the Cryptosystem

Figure 4 is a summary of the cryptosystem with respect to our analysis. The
function obf_enc stands for the obfuscated encryption primitive that we still

10

Client Server

hello packet

hello packet incl. 20
rand. bytes

After this response, all
packets contain a HMAC

obf encKobf (KAES) + aes128 gcm encKAES (Ksess+16 rand B)

Applicative ack

Ask for challenge

chall: 20B challenge

After this response, this
session has the priviledge
associated with password

HMACsha1(key = sha1(password), text = chall)

Auth result

payload + HMACsha1(key = Ksess, text = payload)

payload + HMACsha1(key = Ksess, text =
payload)

. . .

Session establishment

Password authentication

Rest of the com-
munication

Figure 4: Cryptosystem summary

have not totally recovered. The password based authentication mode was not
yet fully examined at the time this article is written.

The cryptosystem mostly relies on standard and solid primitives that we have
been able to identify. However more time is required to analyze the obfuscated
part and thus give a motivated opinion on the complete system. There are still
unknown parts that could lead us to think that these algorithms make use of
stored secrets (maybe in the firmware or PLC’s hardware) to exchange sensible
data. These secrets could be common to all the PLC of a same model and with
the same firmware version.

At this point, it seems sensible to look on the PLC side and more precisely
look at the firmware, in particular to verify if the counter-part of the obfuscated
functions was also obfuscated on the firmware. The hypothesis is that equipment
with lower resources may use lighter or no obfuscation.

In case this hypothesis is confirmed, it could probably allow to easily identify
which algorithm is used. That part of the analysis is covered in section 5.
However before digging into that part, we will describe the attack that allows to
steal an authenticated session.

11

4 Stealing an authenticated session with a man-
in-the-middle

As explained in section 3.3.1, a lack of entropy makes the output of the PRNG
predictable: the generated sequence is the same for every instance of the client.
This part describes the steps which allowed us to write a code demonstrating
the possibilities of this attack.

4.1 Summary of the Problem
All the security of a session relies on the fact that only the client and the server
know the shared secret, that we call the “session key”. The values generated by
the PRNG are totally predictable, because of a defect in the seeding process:
the PRNG is always initialized with constant values. It is hence possible to
enumerate all the session keys in the order they are generated.

4.2 The Attack
4.2.1 Description

From one single authenticated packet, it is possible to verify if a given session
key has been used to generate the HMAC that authenticates the packet. Since
it is possible to sequentially enumerate the session keys generated by the HMI,
it is possible to generate and test the keys one by one in a very reasonable time.
This attack allows to recover the session key that authenticates the captured
packet; this session key will allow the attacker to authenticate any other packet,
allowing him to perform actions with the privileges of the stolen session.

The first objective is to modify the responses to the read requests sent by
the client, in order to modify the view of the state of the PLC from the client
side. The second one is to write arbitrary values on the PLC with the privileges
of the session, without being detected. Figure 5 shows the input and output
LEDs, and a part of the supervision interface (on the top of the figure). Note
that the red and green dots in the supervision screen are the LEDs of the PLC,
and that their states are synchronized.

This attack needs a read-access to the network. It might be possible to get
interesting results without being in a man-in-the-middle position, provided that
at least one authenticated packet can be captured. This line of attack will not
be studied here.

Step 1: Man-in-the-middle on the TCP Connection
In order to modify and intercept the packets exchanged between the client

and the server in the TCP connection, the first step is to make all the packets
transit by the attacker’s computer. This can be achieved for example with an
ARP spoofing attack.

Our man-in-the-middle relies on NFQueues. Packets are read in user space,
modified and sent back to the kernel. The command used to sent the routed
packets into an nfqueue is:

sudo iptables -I FORWARD -j NFQUEUE --queue -num 1 [< various filters >]

12

Figure 5: Preview of the inputs and outputs of the PLC, and of a part of the
supervision interface (on top)

A Python binding for the nfqueue PLC has been used. This binding does
not implement the set_payload function. To be able to implement the attack,
modified packets are actually dropped by the nfqueue, then sent back using a
raw socket after having modification.

As we will see later, some modifications on packets change their size, which
breaks the synchronization of the seq and ack on both ends of the TCP connec-
tion. Our code, which is only a proof of concept, does not handle this problem
of synchronization, hence the TCP connection is reset in some cases.

Step 2: Retrieving the Session Key
This part is quite simple. The HMAC of a packet is easy to locate: it is the

32-byte block with a high entropy seen before. The session keys are generated
in the same order as the HMI does, and tested one by one. The number of
sessions established by an HMI since its start-up begin reasonably low, the key
is retrieved very quickly.

Step 3: Authenticating Arbitrary Packets
Knowing the session key, it is possible to authenticate arbitrary packets. The

simplest way is to start from an existing packet, modify it, then authenticate
it by computing the HMAC. A verification step can be done by launching the
brute force on the modified packet and checking that the retrieved key is the
same as the one used to authenticate the packet.

Step 4: Modifying the Responses to the Read Requests
To keep it simple, the attack will be built against a specific HMI project.

It is possible to make something more generic, but it requires more time and
brings no interesting improvement to the proof of concept.

For a given project, the read and write requests and their associated responses
always have the same payload. To control the values received by the supervision

13

Figure 6: Desynchronization between the PLC and the supervision interface

(the client), one needs to locate in the responses the offset to the values of the
PLC variables, and to set them to the wanted value. Authentication data is
then added using the method described previously. Finally, packet is sent to the
supervision.

This method allows us to fill our first objective: control what is received
by the supervision, and hence what and operator would see on the HMI of an
industrial site. An example of implementation of this attack can be seen Fig. 6:
the state of the supervision interface, on top, is not consistent with the real state
of the LEDs of the PLC.

Step 5: Generating Write Requests
This part is a little bit more complicated. To carry it out, the easiest way is

to substitute a read request for a write request, which will be almost entirely
forged. Substituting an existing request avoids forging the TCP part of the
packet.

A write request that is accepted by the PLC must be written. Our existing
data is a legitimate write request generated by the supervision protocol, and
previously captured. To determine which fields needs to be changed to create
a valid request for an arbitrary session, we can study the differences between
two legitimate write requests, or between a forged, invalid packet and a valid
packet. Most of these fields are easy to rebuild, because the depend either on the
payload of the current packet, or on the previous packet sent by the supervision,
whatever it is.

Nevertheless, one field is more complicated to forge: a sequence number
unique to the write requests. If it is not consistent, the PLC will refuse the
request. To retrieve this sequence number, three methods can be used:

• Be lucky enough to intercept a write request done by the HMI. Not every
HMI do write requests, hence this scenario is not always reliable.

• Reset the connection: this forces the supervision to send a new password
authentication request. This request happens to be a write-type request,

14

allowing us to retrieve the wanted sequence number. Note there is no
password authentication, this attack is unnecessary.

• Brute force the sequence number until the PLC accepts the write request.
This solution is less viable and, in some cases, less discreet.

Using a trial and error method, we managed to generate valid write requests
for an arbitrary variable, for a given project. Only the modification of output
variables has been implemented.

4.2.2 Consequences

Our example is restricted to supervision sessions, but can also be extended to
administration sessions. It could allow an attacker to steal a reprogramming
session of a PLC to upload an arbitrary program. Every communication estab-
lished by a vulnerable client that uses this protocol can be compromised with
this attack.

A security fix for this vulnerability has been released by the manufacturer.
This attack is quite realistic: in practice, it is often possible to gain access to

an industrial system. Some of them are connected to enterprise networks or even
directly to the Internet4. When it is not the case, they can use wireless networks
(WiFi, GSM) to operate. Even when these attack vectors are not available,
another event might make this attack possible: for example, a connection from
a maintenance agent’s laptop. These networks are most of the time flat, what
makes the attack practicable.

5 Accessing the Firmware
The firmware can be downloaded from the manufacturer’s website. A valid
account is necessary to access the download page.

The most recent firmware available for this PLC model was the one already
installed on the PLC.

The firmware format is specific to the manufacturer. It is mainly composed
of a header, which contains a table of sections, followed by the content of each
section. A CRC-32 of the content of each section is present in this header.

A section named A00000 contains the whole code of the PLC. The last section,
FW_SIG, contains a signature.

5.1 Unpacking the Firmware
The A00000 is fully compressed. The compression algorithm is a priori unknown,
the unpacking code being available only after decompression... During a firmware
update, the PLC checks the firmware signature, unpacks the code of the section
A00000 and writes in a Flash memory.

As the Flash memory could not be dumped easily, the compression function
had to be studied in black box.

Some blocks have been particularly interesting for the study, as they started
by data whose unpacked version was known: it was mainly pages from the Web
server of the PLC (HTML or CSS files).

4See [5] for an internet scan of Modbus (another industrial protocol) speaking devices)

15

Some data in the packed firmware, including pieces of Web pages, seem to
be stored in plain text. However, a null byte is inserted every 9 bytes:

00 04 3C 68 74 6D 6C 3E 3C ..<html><
00 62 6F 64 79 3E 0A 3C 74 .body>.<t
00 61 62 6C 65 20 63 65 6C .able cel
00 6C 73 70 61 63 69 6E 67 .lspacing
00 3D 22 31 30 22 3E 0A 00 .="10">..

Thus, data seem to be stored in 9-byte blocks. Sometimes, the text is partially
stored in plain text. It these cases, this is not a null byte which is inserted, but
for example 41 or 10, as in the lines 2 and 4 of the following example:

00 3C 6D 65 74 61 20 68 74 .<meta ht
41 74 08 22 63 6F 6E 74 03 At."cont.
00 2D 74 79 70 65 22 20 63 .-type" c
10 6F 6E 74 03 3D 22 74 65 .ont.="te

The plain text is easy to guess: <meta http-equiv="content-type" content="te.
A few bytes have been replaced:

• p-equiv= has been replaced by the byte 0x08 at line 2;

• ent has been replaced by the byte 0x03 at lines 2 and 4.

The original bytes have been replaced by their length!
The lines where bytes have been replaced do not start by a null byte, but by

0x41 or 0x10. This byte is actually a mask: the ith bit of this byte indicates if
the ith byte of the block has to be copied, or if it is a length. Thus, a mask of
0x41 = (1 << 6) + (1 << 0) means the bytes 2 = 8 − 6 and 8 = 8 − 0 contain
lengths.

The length of any compressed block can now be determined. Moreover, part
of the data can be unpacked. For example, the following example:

40 73 09 68 61 6E 64 68 65 @s.handhe
00 6C 64 2C 20 6F 6E 6C 79 .ld, only
04 20 73 63 72 65 09 61 78 . scre.ax

will be decompressed in something like: sXXXXXXXXXhandheld, only screXXXXXXXXXax,
where the bytes set to X are unknown.

This is strongly reminiscent of a LZ compression, where a dictionary is built
as the decompression process runs.

How to retrieve the missing bytes knowing only their length? Conventional
LZ algorithms encode the length and the distance to the block to be copied.
Here, only the length is encoded.

A rather tedious manual analysis showed that whenever a length was found,
the four bytes preceding it were already present in the data already unpacked.
Hence, the previous occurrence of “scre” was already followed by a string whose
9 first bytes were the same as the expected plain text:

media="handheld, only screen and (max-width: 767px)

Unpacked data will then be:

16

sXXXXXXXXXhandheld, only screen and (max

This was a good progress. What we did was, every time a length was found,
to search for the 4 previous bytes in the already unpacked data and copy the
bytes following them. However, some unpacked data using this method was not
consistent.

We made the hypothesis that, for performance reasons, the unpacking algo-
rithm was not looking back the 4 bytes preceding a length each time a length
was found, but that a hash table was built during the unpacking process. This
assumptions was actually correct. The problem is that, to limit the memory
usage, the hash table has a small size. Various inputs produce the same hash
entry and collide, which leads to problems in the unpacking process if we don’t
know the hash algorithm used to compute the indexes of the hash table. There
is then a cascade of errors and, at the end, the output data becomes completely
wrong.

As the way to build the hash table is unknown, we were in a dead end.
The solution was given by reading a list of various public LZ algorithms. The
WikiBooks page on data compression [9] has been really useful: it mentions the
LZP algorithm. It is exactly this algorithm, more precisely LZP3, which is used
in the firmware.

This algorithm is detailed in [3]. An implementation has been developed. The
firmware was then fully unpacked. The end of the unpacked section contained a
CRC-32 of the whole section, which allowed us to ensure the output data was
correct.

5.2 Firmware Signature
Access to the whole code of the firmware was essential to understand the signature
mechanism. A static analysis showed that ECDSA-256 was used. In order to
avoid parsing problems, particularly when reading the section table, a simple
solution is used by the vendor: all the firmware is signed, except the 78 last
bytes, which contain a fixed size signature. Data in the header of the FW_SIG
section are actually not taken into account to verify the signature.

The curve and the generator used for the signature are standard ones (ANSI
X9.62 P-256). The hash function is SHA-256.

The integrity mechanism of each section relies on a CRC-32, which is not
secure from a cryptographic point of view. Nevertheless, no exploitation is
possible if the global signature of the firmware is not circumvented. The imple-
mentation has been thoroughly studied. No vulnerability has been found on this
mechanism.

5.3 Memory Layout
The format of the resulting firmware is unknown (no ELF, no bFLT, etc.); it
seems to be a monolithic binary. In order to understand it correctly, having an
idea about the memory mapping of the binary would be perfect.

During the examination of the binary, a table of sections with a rather simple
format was identified. It can be found by looking, for example, for the string
.text, which is the name of the code section. Here is a readable dump of the
section table:

17

Section name Address Size Permissions Unknown
.exec_in_lomem 0x0 0x7f24 -- --x (0x1) 0x0
.bitable 0x40000 0x40 -- --x (0x1) 0x0
.sdramexec 0x40040 0x4d4 -- --x (0x1) 0x0
.syscall 0x40540 0x18 -- --x (0x1) 0x0
.th_initial 0x41040 0x2c70 i- --x (0x21) 0x0
.secinfo 0x43cc0 0x318 i- r-- (0x22) 0x0
.fixaddr 0x44000 0x0 -? --- (0x4) 0x0
.fixtype 0x44000 0x0 -? --- (0x4) 0x0
.text 0x44000 0xe490f0 i- --x (0x21) 0x0
.rodata 0xe8d100 0x3f4a6c i- r-- (0x22) 0x0
.data 0x1281b80 0x27114 i- rw- (0x2a) 0x0
.bss 0x1e01040 0x7ce53c -? -w- (0xc) 0x0
.uninitialized 0x3641040 0x394247c -? -w- (0xc) 0x0
CLSI_CACHED_MEM_POOL 0x6f834c0 0x0 -? --- (0x4) 0x0
.dram_uncache 0x7ff0000 0x0 -? --- (0x4) 0x0
MAP_MAC_MEM 0x7ff0000 0x494 -? -w- (0xc) 0x0
.iram0 0x10030000 0x7aa0 -? -w- (0xc) 0x0
.iram1 0x10040000 0xc35c -? -w- (0xc) 0x0
.crctable 0x1004f400 0x400 -? -w- (0xc) 0x0
.softboot 0x1004f800 0x700 -? -w- (0xc) 0x0
.bootinfo 0x1004ff00 0x1c -? -w- (0xc) 0x0
.dtcm 0x10010000 0x2a00 -? -w- (0xc) 0x0

The Unknown field is always set to zero, but is present in each entry of the
table.

The i permission means “initialized when loaded in memory”: this is data
that matches parts of the binary directly loaded into memory. This information
is merely empirical, and the first section does not fit into this case: it contains
firmware code but has no permission i.

The role of the ? permission is unknown. It seems that it could allow a
certain kind of reading when i is not present. It could mean “allow reading of
uninitialized data”.

Here is how the firmware is loaded into memory:

• The first 0x40 bytes are a header, a priori not mapped.

• Bytes 0x40 to 0x7f64 (0x40 + size of .exec_in_lomem) are loaded at
address 0.

• Bytes 0x7f64 to 0x8040 are ignored.

• The other sections are loaded in order, without ignoring any byte. Thus,
the following sections are loaded from the firmware:

– .bitable (a header)
– .sdramexec

– .syscall

– .th_initial (code initializing the BSS, among other things).
– .secinfo (section table)
– .text

18

– .rodata

– .data

All the other sections are a priori left uninitialized. The .bss section will be,
for example, initialized at boot time by the code located in .th_initial.

Maybe some of these sections are related to physical devices. It must be
noted that the firmware frequently dereferences unmapped addresses, according
to the section table, looking like code accessing hardware components. These
addresses are often very close to 0xffffffff.

The beginning of the data is a header describing the memory layout of the
PLC. It is immediately followed by the code. The code of the PLC is now fully
available for a static analysis.

Unfortunately, the obfuscated algorithms embedded in the supervision soft-
ware were also protected on the PLC.

6 Conclusion
The approach we followed to reverse engineer an industrial system has been
explained in this paper. The fuzzing part allowed us to get familiar with the
architecture and to identify interesting features in the involved technologies.

The black-box reverse engineering part gave us quickly enough information
to target the key elements which needed a deeper analysis. In this last step,
much of the authentication system has been understood, a vulnerability has
been identified and exploited. Finally, the analysis of the firmware gave us new
horizons to look for other vulnerabilities on the PLC.

Thereafter, this information will allow us to have a better understanding
of these technologies, or to make more specific fuzzers by knowing all the data
formats used by the protocol.

Unlike what has been previously seen, the company which manufactures
the PLC made a significant effort to secure its devices, even if there is still
some way before reaching a confidence level close to what can be found in
classical information systems. There have also been very reactive at fixing the
vulnerabilities we identified. Things are moving in the right direction.

References
[1] Aki Helin. Radamsa. https://code.google.com/p/ouspg/wiki/Radamsa.

[2] Aleksandr Timorin. SCADA deep inside: protocols and secu-
rity mechanisms. http://fr.slideshare.net/AlexanderTimorin/
scada-deep-inside-protocols-and-security-mechanisms-40672525,
2014.

[3] Charles Bloom. Lzp: A new data compression algorithm. In James A. Storer
and Martin Cohn, editors, Data Compression Conference, page 425. IEEE
Computer Society, 1996.

[4] Florent Monjalet. Hexlighter. https://github.com/fmonjalet/
hexlighter.

19

[5] Pierre Lalet. Scanning internet-exposed modbus devices for fun & fun.
http://pierre.droids-corp.org/blog/html/2015/02/24/scanning_
internet_exposed_modbus_devices_for_fun___fun.html, 2015.

[6] Luigi Auriemma. signsrch. http://aluigi.altervista.org/mytoolz/
signsrch.zip.

[7] Rob Savoye. Reverse Engineering of Proprietary Protocols, Tools and Tech-
niques. In FOSDEM, 2009.

[8] Symantec. W32Stuxnet. http://www.symantec.com/security_response/
writeup.jsp?docid=2010-071400-3123-99, 2010.

[9] WikiBooks. Data compression/dictionary compression. http://en.
wikibooks.org/wiki/Data_Compression/Dictionary_compression,
2014.

20

