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1 Abstract

This paper has two main points:

• Because almost no organizations in the world perform BIOS patch management, it is almost guaranteed
that any given system has at least one exploitable BIOS vulnerability that has previously been publicly
disclosed.

• The high amount of code reuse across UEFI BIOSes means that BIOS infection is automatable and
reliable.

We hope to raise awareness for these issues, so that organizations will take at least the bare minimum step
of deploying the patches that vendors have already made available to patch vulnerabilities (and taking to
task those vendors who never patch any vulnerabilities.)

2 Revision History

• June 11th 2015 - Initial Public Release
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3 Introduction

Since 2012 we have found and responsibly disclosed numerous vulnerabilities in x86 firmware. [5][16][17][18][9][19]
Other groups like Intel Advanced Threat Research team[4][3], and researchers such as Rafal Wojtczuk[37],
Snare[28], and Trammel Hudson[15] have also published vulnerabilities that affect the ability to break into
BIOS/SMM during this time.1

This has led to a situation where there are a plethora of known vulnerabilities for x86 firmware. And
while we try to raise awareness for the criticality of these issues by engaging the media and social media,
in practice there has been little movement towards instituting BIOS patch management as a standard IT
best practice2. This has led to a breakdown in the traditional responsible disclosure process. When no one
patches, this simply leads to a situation where there are multiple vulnerabilities known to attackers, that
can be reliably exploited.

In this paper, we are also providing evidence about the feasibility of widespread BIOS infection. For a
long time it has been assumed that BIOS malware was a theoretical possibility, but that in practice it was too
difficult to implement. One reason for this belief was the general notion that there was too much obscurity
to overcome, and too much customization necessary to make infections widespread. This was perhaps true
in legacy BIOSes. We don’t know, because we started our research as legacy BIOS was being phased out,
and UEFI BIOSes were coming to prominence3. But we show here that it is demonstrably false on UEFI
BIOSes.

Another reason people tended to think BIOS malware could not be widespread is because it hadn’t been
detected in the wild. This led to a self-fulfilling prophecy, where no one had detected BIOS malware, because
no one was looking. And no one was looking, because it wasn’t known to be a problem.

The fact of the matter is that Edward Snowden’s leaks of classified information have shown that the NSA
had BIOS infection capabilities since at least 2008.[1] Therefore BIOS malware has been known to be present
in the wild since the leaks were released in 2013, but as of yet has not detected by any security software.
This paper aims to show why it could be far more prevalent than people think. And we won’t know how
prevalent they really are, until organizations start checking.

4 Background

System Management Mode (SMM) is an execution mode of x86 processors, that was added in the early 90s.
It aimed to provide a protected location into which OS-independent code could be loaded by the BIOS,
which would then continue to handle hardware management activities. SMM code is invoked by System
Management Interrupts (SMIs), and it is generally the BIOS’s job to configure hardware to fire SMIs in
the event that it needs management. Once all the necessary SMM code is placed into System Management
RAM (SMRAM), the BIOS is supposed to lock access to SMRAM, so that no one else, not even the BIOS,
can access it thereafter, until the next reboot.

The benefit to an attacker of leveraging SMM was first discussed by Loic Duflot in 2006[12]. It was used
to subvert OpenBSD’s internal kernel protections. This subversion was possible because SMM code has
unrestricted access to all physical memory, and was thus not subject to OpenBSD’s protection mechanisms.

It is this property the combination of properties that normal security software cannot inspect SMRAM,
and that SMM can access all RAM which makes a SMM attacker so powerful. The ability to see and modify
other programs running in memory means that effectively SMM is more privileged than all applications,
OSes, and hypervisors that may be running on the system.

1And all modern work owes a debt to Invisible Things Lab (ITL), which was ahead of its time, publishing numerous
vulnerabilities in the 2008-2009 timeframe.

2This assertion is based on the fact that at our previous employer, part of Xeno’s job as research project leader was to
perform outreach to encourage government and private organizations to perform BIOS patching, and vulnerability assessment.
This met with negligible success.

3Although our first ever BIOS exploit[5] was for a legacy BIOS
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5 Incursions (CERT VU#631788)

5.1 Automatic enumeration of attack surface

During the course of our previous work, vulnerabilities were found that would allow an attacker to disclose
the contents of SMRAM, e.g. [37]. We wanted to understand what the attack surface against code in SMM
looked like. UEFI provides a well-defined way for BIOS-makers to register code to be invoked when a specific
value is sent to IO port 0xB2 by software. This is known as the software SMI (SwSMI) interface. This is in
contrast to SMIs that fire due to hardware events.

A kernelspace attacker is still less privileged than SMM, and therefore if there are any vulnerabilities
in any of the accessible SwSMI handlers, this will potentially serve as a privilege escalation mechanism
for the attacker. Therefore the first step to enumerate the attack surface is to understand what the data
structure that holds the registered SwSMI handlers looks like. By using the open source EDK2 reference
implementation, we could obtain a list of known functions that would be registered for SwSMI handling.
By then searching through an SMRAM dump, we could identify locations where pointers to those functions
existed. By searching for multiple functions, eventually a pattern emerged where a data structure ASCII
tag, pointer address, and value to be writing to 0xB2 could be observed. Figure 1 shows an example of this,
as the ASCII tag is DBRC, the function pointer is 0xDB05EBCC, and the value to write to port 0xB2 to
invoke this function is 0x61.

Figure 1: Registered SwSMI data structure format

Once this common structure was determined, it was trivial to write an IDA Pro script that would
search through the SMRAM dump, enumerate instances of the data structure, jump to the target locations,
disassemble the code, rename the functions and add helpful comments for the human to know which value
would invoke this function. After creating this script, and dumping the SMRAM from commercial systems,
it was found that the same data structure format appeared to be used on the 10 systems from we tested4.

5.2 Automatic enumeration of likely vulnerabilities

Once we had multiple SMRAM dumps from multiple vendors BIOSes to look at, we quickly found that there
appeared to be numerous trivial-to-exploit vulnerabilities easily accessible. These vulnerabilities were very
obvious thanks to a notational convention of IDA Pro/HexRays. If IDA sees an address being used, that
points outside of the current binary’s address range, it will highlight it in red. If our SMRAM dumps cover
the entire SMRAM range, and if we open an SMRAM dump in IDA and rebase it to start at the address
where SMRAM begins, any access that appears in red will be an access outside SMRAM!

4In training classes where the script was used by students on their own machines (including Macs), there has so far been
only a single PC system that the data structure didn’t match on. We have not yet investigated whether a trivial change (e.g.
of ASCII signature) would add compatibility for this system.
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All memory outside of SMRAM should be treated as untrusted by SMM code, as it can be manipulated
by the attacker. In Figure 2 we see an instance where a SwSMI handler calls directly to code outside of
SMRAM. The attacker could place arbitrary code at this location, and it would execute while the CPU was
in SMM. The attacker could then make use of SMM-only capabilities, such as writing to the SPI flash chip,
that might otherwise be denied. Figure 3 shows a particularly vulnerable function in an HP system, with
many separate instances of the same problem.

Figure 2: Pseudocode for a SwSMI that calls outside of SMM.

Figure 3: Pseudocode for an especially vulnerable SwSMI that calls outside of SMM many times.

Figure 4 shows an example where a SwSMI handler uses a memory address outside of SMRAM as a table,
which it extracts a function pointer from, and then calls the function. Again, the attacker can completely
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control the contents of the table, and thus force the code to call to attacker-controlled code.

Figure 4: Pseudocode for a SwSMI that calls a function, as looked up through a table outside of SMM.

Figure 5 shows an instance where the attacker cannot control the code which is run, only the input
parameters. However in this case, the parameters are being fed into a function which just performs a write
of attacker controlled values to an attacker controlled Model Specific Register (MSR). System Management
Range Registers (SMRRs) are one of the two primary access control mechanisms on SMRAM. They are
implemented as a special type of MSR, that can be read by anyone, but only written by code running in
SMM. Therefore if the attacker can get the SMM code to write to the SMRRs for him, he can simply disable
SMRAMs read/write protection, and infect it directly.

Figure 5: Pseudocode for a SwSMI that allows an attacker to set arbitrary MSR values.

Finally, Figure 6 shows an example of a function that performs memory copies to a local variable using
attacker-controlled input, and attacker controlled size. This allows for trivial buffer overflow exploitation. It
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is particularly trivial because there are no exploit mitigations applied to SMRAM.

Figure 6: Pseudocode for a SwSMI that allows an attacker to perform a memory copy into SMRAM, with attacker-
controlled arbitrary contents, and arbitrary size.

5.3 Vendor response

A writeup describing the nature and prevalence of these vulnerabilities was initially sent to the Carnegie
Mellon Software Engineering Institute (SEI) CERT/CC and the UEFI Security Response Team (USRT) in
October of 2014. The issue was assigned CERT VU#631788. The vulnerabilities were first discussed publicly
at CanSecWest in March of 2015.

• HP provided the following statement: “HP is aware of the problem, working the problem and is working
on a communication about the resolution.”

• Dell confirmed that the E6430 includes the vulnerability and is working on BIOS update patches for
the E6430 and similar systems.

• Lenovo’s advisory for the vulnerability, which will contain rolling updates as machines are patched, is
available at [22].

• American Megatrends Incorporated (AMI) provided the following statement: “AMI is working with
OEMs to ensure that derivative projects in the field and production are also not affected by this vulner-
ability. End users should contact their board manufacturer for further information about availability
of BIOS updates for their products.”

• Insyde provided the following statement: “Insyde works directly with OEM and ODM customers. We
suggest that End Users contact the manufacturer of their equipment. Insyde takes great care when
creating our BIOS products. However, if you believe you have found a security issue, feel free to
contact Insyde Software on our website. Insyde has reviewed the Insyde BIOS code and to the best of
our knowledge, believes no Insyde system has been vulnerable to this issue. However to be prudent,
Insyde has hardened all of the interfaces in InsydeH2O SMM handlers. The updates were available in
Tags 03.74.26 and 05.04.25 which was the 2014 work week 25 and 26 release. The internal tracking
number was IB02960648. OEM and ODM customers are advised to contact their Insyde support
representative for documentation and assistance. End users are advised to contact the manufacturer
of their equipment.”
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• Phoenix provided the following statement: “”Phoenix reviewed the attack scenarios presented by Leg-
baCore and developed a comprehensive methodology of SMM vulnerability mitigation. This included
identifying unsecure EDK I and EDK II code patterns, extensive SMM code reviews, and runtime
diagnostics utilizing page fault handlers in SMM to pinpoint offending code. Using these methods we
discovered and fixed vulnerable drivers and released patches to customers. For systems that do not
support the Intel SMM Code Access Check feature, we offer the NX in SMM solution to provide similar
protections. Phoenix shared these mitigation strategies not only with customers, but also publicly with
the industry.”

• Intel provided the following statement: “This class of vulnerabilities redirects SMM code to execute
instructions outside SMRAM, and we often refer to them as “SMM Call-Out Vulnerabilities” Intel is
not currently aware of SMM call-out vulnerabilities in our supported products.”

• The following vendors were also contacted directly (in addition to potentially via the CERT/USRT
disclosures) but have not yet provided a response: Apple, Microsoft, Samsung, LG, Acer, Asus, Fujitsu,
Panasonic, NEC, Vaio, MSI, Gigabyte. Companies not listed here are requested to provide direct
contact information for future disclosures.

In the initial disclosure Corey offered to provide our Incursion detection IDA script to OEMs, to help
quickly detect and remove these vulnerabilities. Only 2 vendors ever requested it.

5.3.1 A missed opportunity?

In the whitepaper version of their “Attacking Intel TXT” talk [38], Wojtczuk and Rutkowska describe
finding and disclosing vulnerabilities in Intel SMM handlers that sound very similar, if not the same, to the
Incursion vulnerabilities. They state “This single design decision has lead to some 40+ places in the SMM
handler, where each might potentially introduce code execution vulnerability in SMM mode.” In Tereshkin
& Wojtczuk’s later “Attacking Intel BIOS” presentation[39], further details are given as “bonus” material.
The single concrete example shown involves SMM looking up a function pointer from ACPINV space, and
calling to it. This is similar to the vulnerability shown in Figure 4.

The Attacking Intel TXT paper provides another an interesting detail however. It stated: “Intel told us
that they have also notified CERT CC about this problem, because they believed similar SMM bugs might
be present in other vendors’ BIOSes. CERT CC has assigned the following tracking number to this issue:
VU#127284.” But as of 2015, there is no public post for VU#127284 on CERT’s website5, and therefore
there is no record of which vendors were or weren’t informed, and whether they admitted vulnerability or
not.

To us this indicates that Intel attempted to inform other vendors of this class of vulnerability. Clearly the
vendors had either didn’t understand the warning, ignored it, or just returned to their old ways of including
vulnerable code by 2014, due to inadequate developer training. This is why it is important for tools for
firmware vulnerability assessment like Copernicus[23] and Chipsec[31] to exist. Because otherwise old bugs
can silently come back years later.

6 SMM Malware & LightEater

Malware that persists via infection of the SPI flash chip, and runs hidden in the background in SMM should
be considered the most powerful form of on-CPU malware. An SMM attacker can perform any action that
a less-privileged attacker can. So when people ask “What can BIOS malware actually do?”, our answer
is “Everything.” All the sort of attacks that we typically associate with other malware, are within the
capabilities of SMM malware.

In order to impress upon people that an SMM attacker’s capabilities are not theoretical, we have imple-
mented a few of the various attacks that are possible. In this paper we introduce “LightEater” as the proof
of concept malware that mimics what a real SMM attacker might look like. This experimentation helps

5The situation where CERT ultimately doesn’t publish a VU is a situation we are intimately familiar with. CERT has never
published the details of multiple vulnerabilities that we submitted in the past, despite explicitly being asked to. Specifically
vulnerabilities that they had assigned VU#s 577140 & 291102
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flesh out the places where SMM malware can contain completely OS-independent capabilities, vs. those that
would be OS-specific payloads. And it also provides useful information in terms of the size of example code,
and a lower bound on the amount of development time that would be required sophisticated attackers to
bootstrap such a capability.

6.1 Undercutting the security of Tails, and other “live OSes”

A “live OS” is an operating system which is meant to be non-persistent on a given piece of hardware. Such
systems became popular with Linux distributions like Knoppix[33] that could be booted off a a CD. The
security community eventually customized such systems to create all-in-one security-focused distributions
such as Kali Linux[32]. Others, including the US Air Force[2] have sought to use a live OS to negate the
effects of malware installed into the persistent OS, and provide a temporary trusted computing base from
which to access controlled credentials and controlled networks.

Tails is another such system that attempts to use a live OS to increase security. Tails stands for “The
amnesiac incognito live system”[34]. Its stated goal is to help people preserve their privacy and anonymity
while using the internet, while leaving no trace of its usage on a system which could be recovered through
forensic analysis. Tails rose to particular prominence after it was revealed that Edward Snowden used it
while leaking NSA secrets[14].

The Tails FAQ[35] as of May 29th 2015 states the following:

Is it safe to use Tails on a compromised system?

Tails runs independently from the operating system installed on the

computer. So, if the computer has only been compromised by software,

running from inside your regular operating system (virus, trojan, etc.),

then it is safe to use Tails. This is true as long as Tails itself has

been installed using a trusted system.

If the computer has been compromised by someone having physical access

to it and who installed untrusted pieces of hardware, then it might not

be safe to use Tails.

In our work we have shown why some of the above statements are demonstrably false. First, we acknowl-
edge that it is true that both attacks that leverage physical access and those that tamper with hardware
will generally render a computer untrustworthy. However, the FAQ indicates that Tails is trustworthy ”if
the computer has only been compromised by software.” This demonstrates a common misunderstanding of
firmware attacks. Firmware attacks do not require physical access, do not require hardware modification,
and can be installed by ”software, running from inside your regular operating system.” We, and others, have
demonstrated numerous attacks against firmware that can easily be launched over a remote connection.

Therefore there are two primary scenarios that would lead to Tails being untrustworthy despite the
statements in the FAQ:

1) The user uses a particular computer with some other operating system during normal use, and boots
into Tails on the same computer as needed. In this scenario, if the attacker finds a remote code execution
vulnerability in any of the software used in the other OS, they will gain access to the system. From here they
may use a privilege escalation vulnerability to gain administrator or kernel access. And from Administrator
or kernel, the attacker then writes their malware into the BIOS (using an exploit, or just taking advantage
of the fact that many systems leave their BIOS unlocked.)

2) The user uses a particular computer only for Tails. In this scenario, if the attacker finds a remote code
execution vulnerability in any of the software bundled with Tails, they will gain access to the system. As in
the previous scenario the attacker will then escalate privileges with other exploits.

Both of these scenarios are eminently likely if a particular individual is the target of a sophisticated
attacker. Because sophisticated attackers develop and/or buy deep and broad collections of attacks.
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6.1.1 LightEater Tails attack payload

In our demonstration we assume the case of a user who uses Windows on their machine most of the time,
and boots into Tails as needed for encrypted communication.

We created an instance of LightEater which targets Tails specifically, but yet which we believe could
not be easily mitigated by Tails. And even if the signatures were broken, the attacker could likely update
their malware just as fast as the user updates their instance of Tails (unless the system is being strictly
air-gapped.)

LightEater will wake up periodically through the use of a System Management Interrupt (SMI). When
it wakes up, it will scan through memory for signatures indicative of GPG keys, GPG key passphrases, or
decrypted GPG emails. An example showing the capture of all 3 such data types is shown in Figure 7. These
signatures are things like “Start of PGP/Inline encrypted data”, which are expected to be present next to
unencrypted GPG emails, just by virtue of the use of the Claws email client. Additional signatures could of
course be developed for any other software that the attacker knows is built into Tails.

Figure 7: LightEater serial print output showing a captured GPG key, decrypted email, and GPG passphrase.

Tails’ erasure of RAM at shutdown may prevent leakage of sensitive information such as keys via
cold/warm boot attacks. However, even if LightEater can’t directly exfiltrate the captured information
over the network immediately (via the method shown in the next section), it can still store them to non-
volatile storage in the SPI flash chip, as shown in Figure 8. Then the credentials can be exfiltrated the next
time the system has network access.

A key point is that in this attack, LightEater stays entirely resident in SMM, and does not inject any
changes into the OS. It only reads memory, it never writes to OS/application memory in a way that could
be detected by memory forensics software.

6.1.2 What could Tails do to account for firmware malware?

At a minimum, the easy non-technical measure that the Tails project should take is to alter their FAQ to
indicate their system is also not trustworthy in the presence of firmware malware. This would at least raise
awareness with their users, so that there is not a false sense of security associated with the idea that they
can use Tails securely on a system that was previously host to malicious software. This would encourage
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Figure 8: Storing captured credentials to the flash chip.

Tails to only be used in the more reasonable scenario where the system is a dedicated platform, that was
bought specifically for use with Tails.

The next thing Tails could to is to encourage the use of systems that have a Trusted Platform Mod-
ule(TPM), and to add support for TPM provisioning and TPM-based attestation. A TPM is fundamentally
a passive device. When a TPM is ”provisioned”, software sends commands to the TPM telling it to generate
a new public/private key pair. The private half of the key is exported to the calling software, and the private
key is stored permanently within the TPM, and there is no supported way to export the private key from
the TPM. This key can later be used to sign measurements that are stored in the TPM, and the public half
can be used to verify the signatures, to ensure that they came from the TPM. On systems that support the
TPM (typically “enterprise-grade” ones), when the option is enabled in the BIOS, the firmware will perform
measurements over the firmware and configuration options, and places the hashes of those measurements
into the TPM’s Platform Configuration Registers (PCRs). If the attacker is persisting in the main BIOS
region of the SPI flash, their presence will cause an alteration of the measurements in the PCRs. When
these PCRs are then signed by the TPM-resident key, it provides a trustworthy way to detect the presence
of a firmware attacker.

Of course there are a few potential attacks against utilization of such a system. The first is the premise
that the private key stored in the TPM cannot be extracted. Previously Chris Tarnovsky had successfully
extracted the private key from TPMs with the use of a Focused Ion Beam (FIB) workstation[30]. This is
fundamentally a destructive hardware attack, and therefore not within the scope of things Tails attempts to
deal with, and thus can be ignored in this context. Furthermore, recent leaks of classified information[26]
have indicated that researchers at Sandia National Labs have successfully extracted the private key from
multiple vendors’ TPMs through power and EM emissions side-channel analysis. While no details are
publicly available, generally speaking power and emanations analysis attacks on RSA require close-range
physical access to the hardware in question6. Therefore this is again an attack which is not in scope for what
Tails is attempting to combat.

6Unlike timing sidechannel analysis, which might be achievable by an adversary executing code on the CPU
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The most relevant attack is our own work7[6] on the “Tick” proof of concept malware. This showed that
if the attacker can gain persistence in the BIOS - exactly the type of attacker we’re trying to combat in this
scenario - then they could disable the normal measurement code. After disabling the code, they can replay
the expected clean measurements to the TPM. In this way the measurements will not change to detect
the presence of the malware. Indeed, measuring from the BIOS in the presence of BIOS attackers is an
architecturally untenable proposition, unless the BIOS is modified to use the “BIOS Chronomancy” system
which is described in the same paper as a potential fix. But recent changes to Intel hardware has introduced
another potential solution. Intel “Boot Guard”[10] technology stops the mutable/infectable firmware from
serving as the root of trust, and instead makes the CPU the root of trust. In systems where the OEM
has chosen to support BootGuard, the first instructions ever executed on the CPU do not come from the
potentially-attacker-controlled BIOS. The systems instead launches an Intel Authenticated Code Module
(ACM). This is code that is signed by Intel, with a signature that is verified by the CPU itself. If the
signature verifies, this binary blob provided by Intel will configure the system to create a minimal trusted
environment, and then measure the first code in the BIOS. The measurement will again be put into the
TPM, and then the ACM will pass control to the potentially-infected BIOS. But because the BIOS has been
measured before it is invoked, the evidence of compromise will now be stored in a location that the attacker
cannot easily set to the expected clean value 8 Therefore, it is currently believed that if a user of Tails is
using a system with a TPM that has been properly provisioned, and that supports Boot Guard assisted
measured boot, Tails could be extended to provide trustworthy detection for firmware malware. We have
heard specifically from Dell & Lenovo that some of their newer systems support Boot Guard, however no
public list of systems that support the technology is currently available.

Utilize tboot - problem being SMM bypass - solution being STM Another way that Tails could be made
more resistant to subversion by firmware malware is by utilizing Intel Trusted Execution Technology (TXT)
(also known as Safer Mode Extensions (SMX).) These are CPU instructions that allow for the creation
of a root of trust on demand. Intel provides an open source bootloader, “tboot”, that handles all the
complexity of invoking TXT and storing a measurement of the bootloader in the TPM. The goal is the same
as a measured boot, to provide some evidence for whether the system is compromised or not, it just is an
alternate way of achieving the goal. Tboot has been used to securely launch linux[24], the Xen hypervisor[7],
VMware’s hypervisor[25], and others. We have also used TXT in the past to create “Copernicus 2”[20], a
more trustworthy version of Copernicus that could not be subverted by OS-level attackers.

The same caveats to TPM usage apply as in the measured boot case. However, the limitation of TXT is
that it does not measure the contents of SMRAM. Which is exactly where the adversary of concern may be
residing. In 2009 it was shown by Wojtczuk & Rutkowska in “Attacking Intel TXT”[38] how an adversary
could reside in SMRAM, and thus not affect the measurements that TXT performs. Then the next time
an SMI fired, the attacker could compromise the measured environment. This was fundamentally a Time of
Check, Time of Use (TOCTOU) attack. In their paper, ITL conveys that Intel indicated that the solution
for this attack is to use “Dual Monitor Mod” (DMM) (aka SMI Transfer Monitor (STM)), which is also
available from the CPU. DMM is provided by Intel’s hardware support for virtualization, and it provides a
capability to create a hypervisor that serves to jail and restrict SMM’s access. In the presence of a standard
hypervisor, this then becomes a Dual Monitor situation.

However, in the intervening years, DMM has not seen widespread deployment. This is likely because
until the recent spate of SMM vulnerabilities, vendors probably thought that they weren’t as vulnerable to
firmware attacks as it is now being shown that they are. One of LegbaCore’s primary goals as a company is
to help create the first commercial-grade DMM capabilities. Tails users could therefore help their situation
by asking their BIOS makers to incorporate DMM capabilities. And then once such capabilities are available,
Tails can begin taking advantage of them by using systems like tboot.

There are other ways that the TPM could improve Tail’s security as well, e.g. by preventing the GPG
key from ever existing in memory after the first time it’s created. But those are scenarios that would require
larger architectural modifications than the preceding scenarios. As LegbaCore is a consulting company with
deep expertise in the use of trusted computing technologies, it could easily be engaged to help implement any

7performed while leading a research project at our previous employer
8Unless the attackers have the ability to bypass the collision resistance property of SHA1, or whatever hash is used. Because

TPM PCRs do not simply accept values to be written, they hash whatever’s currently in the register, with whatever is being
passed in, and store that resulting hash - a process called “Extending” the PCR.
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of the above scenarios to improve Tail’s defense against firmware malware, if there was sufficient interest.
While we would like to recommend that Tails and others incorporate a BIOS dumper like ChipSec, the

fact is that our previous work[21] has shown that there is no way to currently perform trustworthy reads
of the SPI flash on modern systems. The Copernicus 2 prototype that we made at our previous employer
turned out to not be able to provide the trustworthiness guarantees that we thought it did, due to the varying
behavior of TXT across different CPU generations. 9 With “a stroke of the pen” Intel could change one or
two instructions in their TXT SINIT modules to go back to the previous behavior of disabling SMIs until
they are explicitly enabled from within the TXT-launched code. This would make systems like Copernicus
2 achieve their goals of trustworthy firmware measurement. However when we contacted a senior individual
associated with Intel’s trusted computing efforts to request this change, he indicated a lack of interest. As
such we intend to do future research to address this gap.

For the time being, one of the most actionable recommendations is for Tails to encourage the use of
hardware that has a physical write-protection switch. An example of this are Google Chromebooks, which
contain a screw, that when present, physically enforces write protection on the SPI flash chip. Of course
this leads to a situation where Tails users are thus not trusting their system’s firmware is not compromised,
by inference, rather than evidence. We always believe that trustworthy measurement and verification is
superior to simply trusting some security mechanism not to fail. But it would at least be a situation where
the assumptions of security would be much more justified than they are today.

6.2 Network command & control of firmware-level malware

Another capability we wanted to demonstrate, to show the realism of firmware-level malware, was network
command & control. That is, the ability for the attacker to receive data/commands and send back data over
the network.

Past work[29] has discussed the possibility of SMM-resident malware talking directly to a network card.
In this case, the malware is effectively reimplementing the kernel mode network driver. However, there are
of course many drivers for many network cards, each with slightly different hardware. No work has yet been
done to assess what level of commonality may exist within even a single manufacturer’s hardware. Such
work is necessary to understand whether that proposed technique is actually a reasonably viable method for
an attacker to use.

Other work [36][13][11] has show the feasibility of infecting the firmware on two particular types of NICs.
Again, no work has been done to analyze prevalence and therefore feasibility of such a method.

In this work we propose a method of network communication that is NIC-agnostic. In our proof of
concept we leveraged the “Serial Over Lan” (SOL) capability that comes in Intel vPro-enabled hardware
(to use the marketing term). More specifically it is a capability provided by systems that contain an Intel
Management Engine (ME).

With SOL, the ME exposes a virtual PCI device that implements a serial port. Therefore from LightEater’s
perspective, it just writes data to a serial port. But behind the scenes, the ME uses its out of band access
to the NIC to send the data to a remote party that has connected to the virtual serial port. Therefore
LightEater does not need to know anything about the specific NIC on the system, it merely needs to find
the virtual serial port to write to.

On networks that do not explicitly use Intel Active Management Technology (AMT) (another marketing
name for the use of the ME), it is possible that SOL connections may stand out in network traffic. On
networks that do use it, we would expect it to blend in with background traffic. In general we do not
anticipate SOL being used as a “long haul” exfiltration mechanism. We would expect that it would be used
more as a “last mile” connection within organizations. Another system, such as one infected with a RAT,
would reach out to send kill commands to the malware, or collect captured credentials. The traditional RAT
would then use its existing exfiltration mechanism. Organizations not using AMT should definitely treat
stray SOL traffic as suspicious (as with any unexpected protocol.) However, even if SOL traffic is detected,
it could be relatively difficult to attribute it to an OS-resident tool vs. SMM malware. Here a good kernel
debugger with the ability to set hardware breakpoints on port IO access would be helpful for finding the
source of such activity.

9Our usage of TXT would be secure, even in the presence of an SMM attacker, on pre-Nehalem Intel CPUs.
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Despite the preceding discussion of SOL’s limitations on the LAN, it is worth noting that AMT does
support wireless networking on newer systems10. Therefore another realistic scenario for the use of SOL
networking would be for the attacker to perform a “drive by” exfiltration. Here the malware is configured
to connect to a particular wireless access point at a particular time, and send its data/wait for commands.
The attacker would then proceed to be physically proximate at that time. Only those organizations that
have robust wireless network monitoring would be able to detect this exfiltration.

One limitation of this technique is that it will only work on Intel systems with a ME. These are typically
enterprise-grade laptops and desktops.

Also the ME must be configured once to allow the remote party to connect. The ME can be configured
through a variety of means: over the network via a PKI-enabled server, with a USB drive, or manually
via a GUI accessible at boot (and usually made visible through BIOS configuration options.) In this latter
case, the ME is configured via a BIOS module called the ME BIOS Extension (MEBX). We did not have
enough time to implement malicious provisioning, so we just configured the ME manually. But it should be
understood that anything a user can do from a BIOS module provided GUI, BIOS-resident malware can do
as well. Either by generating the keystrokes that correspond to a human manually configuring the system,
or by cutting out the middle man and sending the same commands that the MEBX sends to the ME. We
will likely implement malicious ME provisioning as part of a future talk.

6.3 OS subversion

We decided that one sure-fire way to prove the point that SMM attackers can do anything lesser-privileged
attackers can do, is to reimplement the capability of a lesser-privileged attacker. In this case we chose to
mimic the propensity of kernel-mode rootkits to monitor all process launches. They do this typically so
that they can see, and decide whether to manipulate, each process as it launches. And they often do this
specifically on Windows via calling the PsSetCreateProcessCallback() kernel-mode API.

Although we believe that an SMM attacker can directly call those kernel mode APIs that do not require
interrupts, we did not have time to implement that for this demo. Therefore we simply had LightEater
directly manipulate the kernel data structure that maintains the list of functions to be called when a process
is launched. It inserted a function pointer that pointed at slack space within the NT kernel’s .text section.
The slack space was filled in with a trival function that did nothing except invoke a SwSMI handler, and
then return. Thanks to the x86-64 calling convention of passing function parameters in registers, he SwSMI
handler then could use saved register state to see the parameters that were passed by the kernel to. From
these parameters it was able to inspect a variety of information available via the EPROCESS data structure.
For demo purposes we simply printed out the application short name, process ID, and whether it was starting
or terminating.

Clearly if SMM malware “lowers itself” to the level of injecting code & data into the OS, it becomes
vulnerable to detection via anti-rootkit memory integrity checkers. This is a positive situation for defenders.
Indeed, the primary reason we knew how to directly manipulate the data structure to bypass the need to
call PsSetCreateProcessCallback(), was because we had previously researched and implemented a runtime
Windows memory integrity checking system that could measure and integrity check this data structure. We
are of the opinion that most rootkit techniques that an SMM attacker might want to stoop to using are
eminently detectable, if tools would only look.

The bad news for defenders hoping to detect SMM injections via memory integrity checking is twofold.
First, from our previous work in the area of memory integrity checking, we know that few commercial security
vendors have any interest in implementing such systems. This is because the systems cannot always provide
clear cut answers about whether a given situation in memory is valid or invalid; expected, or unexpected. To
be most effective, such systems have to periodically be fed information about what is expected to be running.
In that sense, for such systems to be effective, they need to be tied intimately with filesystem whitelisting
expectations.

The second core issue with memory integrity checking systems is that they suffer from incomplete under-
standing of the systems they are meant to protect. That is, the implementor may have complete coverage of
all known integrity violation mechanisms, but attackers can simply reverse engineer a bit more of the system,
and find a new way to achieve their goal, by subverting an un-measured component. The attackers essentially

10We did not have time to play with wireless SOL on our 1 system that supports it.
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have a strong first-mover advantage here. And if they avoid known techniques and stick to unknown ones,
the probability of their detection is fairly low. Many of the things that have been learned about malicious
techniques in the past, come specifically from less sophisticated attackers not caring enough to maintain a
strict exclusion of past techniques. And then their new techniques are revealed only due to being detected
via past techniques.

While we do think there is promise in using memory integrity checks for finding any SMM-leveraging
adversaries that do not maintain strict avoidance of past techniques, it is clear that many sophisticated
attackers would likely maintain the discipline to not use known-detectable techniques.

7 BIOS infection automation data analysis

Showing the feasibility of widespread malware infection can be difficult when the malware has not been
detected as already being widespread in the wild. To show this, we decided to focus on using representative
sample sets, and then extrapolating based on them. We also focus on the level of effort required of attackers.
In all cases we assume that the custom image will be flashable to the SPI flash either due to the BIOS being
unlocked, or through the use of one of the many present exploits, as discussed in previous sections.

First we consider the difficulty of creating a custom BIOS image with the preceding LightEater malicious
functionality embedded within. For this research we purchased a number of used systems from different
vendors such as HP (2x), Asus, Acer, Samsung, Toshiba, Gigabyte, and Asrock. These systems broke down
into 3 categories in terms of the ability to inject malicious functionality into the BIOS. Those that could be
trivially modified with UEFITool[27], those that had some well-known sanity checks that required disabling,
and the generic case of things for which UEFITool did not work, and for which there were no easily found
discussions online in BIOS modder forums about how to customize the BIOS.

The decision tree for such infections is shown in Figure 9.

Figure 9: Infection flow chart.
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7.1 UEFITool FTW

UEFITool is an excellent open source tool created by Nikolaj Schlej. It parses the displays a UEFI firmware
filesystem found in UEFI BIOS dumps. It also deals with customizations and peculiarities of non-standard
filesystems modifications that some vendors engage in. Most important for this discussion, it has the ability
to extract, and re-insert files. While UEFITool is an essential component of a firmware forensics toolkit,
it can of course be used by attackers as well. On some systems, such as the MSI and Acer, we found that
we could extract an SMM module from the filesystem, attach the LightEater code on to the file, and then
reinsert it. The resulting new BIOS image booted fine and pulled our LightEater code with it into SMM.

Therefore, on any system that UEFI insertion yields a valid image, it is trivial for an attacker to do a
one-time analysis of what SMI handler they would like to parasitically infect, build binary signatures, and
create an automated infection chain by scripting the extraction/insertion with UEFIPatch.

7.2 Some sanity check disabling required

In the case of an HP system we had, modifying the firmware image with UEFITool did not yield a bootable
image. However, after a little bit of searching, we found an article which described how to customize such
systems, to run a more up to date VideoBIOS[8]. The analysis provided in that article makes it clear that
HP has added some sanity checks to the BIOS, such that the . The article also makes it clear that such
sanity checks provide little value as a security mechanism (rather than safety check.) Because if random
people reverse engineer and defeat them as a hobby, then actual attackers will have no difficulty either finding
articles on how to bypass them, or bypassing the checks themselves.

In order to get a sense of how many HP systems could be infectable due to just one of many blog posts
online, we followed the steps in this article on our HP system. After we understood the nature of the checks,
we made a simple YARA binary signature for the sanity check code that had to be disabled. From there we
ran the signature over some test machines, and created a few additional variants on the first signature11. In
total we made 3 YARA signatures. We found that these signatures matched 570/789 HP BIOS images. When
we looked at a few systems where the signatures were not found, we determined that with high confidence,
it was because the sanity checks simply didn’t exist in those revisions of the BIOS. E.g. the signature might
be found in a later revision of a particular model’s BIOS, but absent in early revisions. Therefore we did not
attempt to create any further signatures to try and match all BIOS images. Because we are highly confident
that attackers could always easily create signatures for a given vendor’s sanity check mechanisms, and easily
automate the process of disabling the signatures before inserting the other malicious code.

7.3 Other. Apply “hook & hop” bootkit-style modification

On the remaining systems, extracting a file, inserting LightEater, and replacing the file did not yield a valid
bootable image. It’s unknown if this is due to limitations of UEFITool, or actual sanity checks by the vendors
12. While an attacker could of course perform reverse engineering to understand and correct the specific
the cause of the failure, we wanted to make a point about how there is a general approach that attackers
can take that requires no costly time spent on RE. It is a generic technique that is already well-known to
attackers who utilize bootkits, and therefore it could likely be employed with minimal up front overhead.

The technique is what we call “hook & hop”. Traditionally Master Boot Record (MBR)-based bootkits
start from code hooks placed in the MBR, but hop their way all the way into the kernel. They do this by
watching each subsequent phase of code load, and then inserting new hooks into code that might exist across
some potential loss of control. E.g. when the system transitions from real mode to protected mode.

With the well-defined phases of UEFI, and transitions potentially between real, protected, long, and
system management modes, it makes sense that an attacker can employ the exact same strategy to main
a firm grasp on control flow starting instead from the BIOS. And a key point is that there are only a few,
well-known, locations where the attacker could potentially lose control. Furthermore, there are only a few
key dispatchers within the UEFI phases which can be hooked in order to provide the attacker visibility of

11The variant signatures were close enough to the original that we could have merged them all into a single signature. However
we opted for clearer and more direct translations between assembly and signatures.

12but given the vendors’ poor security record, it seems unlikely that they are using sanity checks, and it is more likely a tool
limitation
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when every module loads. This provides them the opportunity to choose their path towards their target at
every step of boot. A simplified representation of the boot is shown in Figure 10.

Figure 10: Super simplified view of UEFI boot structure and stages.

7.3.1 Hook signature analysis

We chose to analyze a few key transition points that we believe an attacker might make use of (only some
of which we made use of in the various LightEater incarnations.) Specifically we chose the PEI to DXE IPL
transition (incase the attacker wanted to be able to invoke the full set of PEI PPIs), the DXE IPL to DXE
transition (an important transition from executing directly from SPI flash to executing from memory), and
the DXE to BDS transition (assuming the attacker wanted to do a minimal UEFI hack, to just navigate
towards and invoke an existing bootkit codebase after having subverted Secure Boot.)

Our process for creating the hook point signatures was to first look at the open source UEFI reference
implementation source code. Then we looked at the compiled code, to see if there were any interesting
novelties about the generated assembly that might serve as good signatures. E.g. in the case of the DXE to
BDS transition source code shown in Listing 1, the compilers very frequently would use the r11 register as
shown in Listing 2. We would also make note of what the module name was for the module that the code
ended up in. E.g. DxeCore on some systems was mostly equivalent to DXE CORE on others.
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//

// Transfer control to the BDS Architectural Protocol

//

gBds->Entry (gBds);

Listing 1: EDK2 Source Code

4C 8B 1D 8A AF 00 00 mov r11, cs:gBDS

49 8B CB mov rcx, r11

41 FF 13 call qword ptr [r11]

Listing 2: EDK2 compiled code

We started by attempting to identify the same transition points across all of our 9 test machines. From
here we expanded out to a data set of 1003 BIOS images that we had collected from vendors’ websites.
When we had misses on signatures we would perform a brief analysis on a system that did not have any of
the signatures found. In this way we iteratively refined the signatures and removed false negatives. Teddy
Reed also provided his dataset of 2158 BIOS images that he had downloaded from vendors’ websites with
an automated crawler. Through the process of analyzing false negatives, we ultimately came to have 4
signatures for the PEI to DXE IPL transition, 3 signatures for the DXE IPL to DXE transition, and 3
signatures for the DXE to BDS transition13.

8 Conclusion

In this paper we have discussed the poor state of BIOS security today. This is due both to the apathy
of organizations that do not feel the need to patch known vulnerabilities, and by the continuing ability of
researchers like ourselves to find vulnerabilities in BIOSes. The good news is that we have started working
directly with some OEMs that care about BIOS security, such as Dell and Lenovo, to perform whitebox
assessments. These will find and fix vulnerabilities faster than the black box assessments that we have done
up until now. Thus we are able to find and fix more bugs faster, so that we can get away from the situation of
a couple bugs per year, for years on end. Furthermore, we are giving BIOS makers a year to decide whether
they are going to commit to protecting their customers. After a year, we will begin a campaign of public
naming and shaming of vendors that refuse to patch vulnerabilities that they have been told about.

Ultimately the poor state of BIOS security is the confluence of many factors which will take years to
disentangle. There is the fact that BIOS attacks have for a long time been “out of sight, out of mind”, and
IT organizations have. There is the fact that there is still prevalent misinformation about the notion that
you are likely to brick machines through failed BIOS updates (we have overseen the updating of thousands
of BIOSes, with not a single failure.) Or the misinformation that BIOS updates are hard to do (they are
just executables to be run through your patch management software like any other executable.) There
is the fact that asset management software often does not report BIOS revisions. There is the fact that
patch management and continuous monitoring software usually does not report that BIOSes have security-
critical patches available. There is the fact that BIOS makers do not have standardized metadata formats
or delivery mechanisms for patch management software to consume. There is the fact that BIOS makers
are now writing BIOSes in C instead of assembly, and therefore falling prey to all the traditional dangers
of C programming that have plagued other developers for decades. All these reasons and more lead to a
dysfunctional ecosystem, fraught with vulnerability.

We hope that our continued use of LightEater as a proxy for the capabilities of malware at this lowest level
serves as a motivation for defenders to take up the challenge of detecting such malware. Both defenders who

13Some of the signatures are very similar and could easily be combined to create a smaller set of signatures. However we
opted for clearer and more direct translations between assembly and signatures.
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write commercial protection software, who cannot honestly say they provide protection from sophisticated
malware when they have such a gigantic blind spot in their inspection, and defenders within each and every
IT organization, who are chartered with protecting their company’s assets.

References

[1] J. Appelaum, J. Horchert, O. Reissman, M. Rosenbach, J. Schindler, and C. Stocker. NSA’s secret
toolbox: Unit offers spy gadgets for every need. http://www.spiegel.de/international/world/

nsa-secret-toolbox-ant-unit-offers-spy-gadgets-for-every-need-a-941006.html. Accessed:
6/01/2015.

[2] United States Air Force ATSPI Technology Office. Software protection initiative - lightweight portable
security. http://www.spi.dod.mil/lipose.htm. Accessed: 6/01/2015.

[3] O. Bazhaniuk, Y. Bulygin, A. Furtak, M. Gorobets, J. Loucaides, A. Matrosov, and M. Shkatov. A new
class of vulnerabilities in SMI handlers. https://cansecwest.com/slides/2015/A%20New%20Class%

20of%20Vulnin%20SMI%20-%20Andrew%20Furtak.pdf. Accessed: 6/01/2015.

[4] Y. Bulygin, A. Furtak, O. Bazhaniuk, and J. Loucaides. All your boot are belong to us (Intel
portion). https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf. Accessed:
6/01/2015.

[5] J. Butterworth, C. Kallenberg, and X. Kovah. Bios chronomancy: Fixing the core root of trust for
measurement. In BlackHat, Las Vegas, USA, 2013. Accessed: 06/01/2015.

[6] J. Butterworth, C. Kallenberg, X. Kovah, and A. Herzog. BIOS chronomancy: Fixing the static core
root of trust for measurement. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security.

[7] J. Cihula. Trusted boot: Verifying the Xen launch. http://www-archive.xenproject.org/files/

xensummit_fall07/23_JosephCihula.pdf. Accessed: 6/01/2015.

[8] CodeRush. SENTER sandman: Using Intel TXT to attack BIOS). http://habrahabr.ru/post/

249655/. Accessed: 6/01/2015.

[9] S. Cornwell, X. Kovah, C. Kallenberg, and J. Butterworth. Cert vu#577140 (CERT has not posted
this yet, despite our telling them they should.). http://www.kb.cert.org/vuls/id/577140. Accessed:
6/01/2015.

[10] Intel Corporation. Intel hardware-based security technologies for intelligent retail de-
vices. https://www-ssl.intel.com/content/dam/www/public/us/en/documents/white-papers/

security-technologies-4th-gen-core-retail-paper.pdf. Accessed: 6/01/2015.

[11] G. Delugre. How to develop a rootkit for Broadcom NetExtreme network cards. http://

esec-lab.sogeti.com/dotclear/public/publications/11-recon-nicreverse_slides.pdf, Mon-
treal, Canada, 2011. Accessed: 06/01/2015.

[12] L. Duflot. Security issues related to pentium system management mode. http://www.ssi.gouv.fr/

archive/fr/sciences/fichiers/lti/cansecwest2006-duflot.pdf. Accessed: 6/01/2015.

[13] L. Duot and Y.-A. Perez. Can you still trust your network card? www.ssi.gouv.fr/IMG/pdf/

csw-trustnetworkcard.pdf, Vancouver, Canada, 2010. Accessed: 06/01/2015.

[14] K. Finley. Out in the open: Inside the operating system edward snowden used to evade the NSA.
http://www.wired.com/2014/04/tails/. Accessed: 6/01/2015.

[15] T. Hudson. Thunderstrike. https://trmm.net/Thunderstrike. Accessed: 6/01/2015.

18



How Many Million BIOSes Would you Like to Infect?

[16] C. Kallenberg, J. Butterworth, X. Kovah, and C. Cornwell. Defeating Signed BIOS Enforcement.
http://www.ekoparty.org/archive/2013/charlas/Kallenberg/DefeatingSignedBios-EkoParty_

2013_v1.pptx, Buenos Aires, 2013. Accessed: 06/01/2015.

[17] C. Kallenberg, C. Cornwell, X. Kovah, and J. Butterworth. Setup For Fail-
ure: More Ways to Defeat SecureBoot. http://www.syscan.org/index.php/

download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_

SetupforFailureDefeatingSecureBoot.zip, Amsterdam, 2014. Accessed: 06/01/2015.

[18] C. Kallenberg, X. Kovah, J. Butterworth, and S. Cornwell. Extreme privilege esca-
lation on UEFI windows 8 systems. https://www.blackhat.com/docs/us-14/materials/

us-14-Kallenberg-Extreme-Privilege-Escalation-On-Windows8-UEFI-Systems.pdf. Accessed:
6/01/2015.

[19] C. Kallenberg and R. Wojtczuk. Speed racer: Exploiting an Intel flash protection race condition.
https://frab.cccv.de/system/attachments/2565/original/speed_racer_whitepaper.pdf. Ac-
cessed: 6/01/2015.

[20] X. Kovah. Playing hide and seek with BIOS implants. http://www.mitre.org/capabilities/

cybersecurity/overview/cybersecurity-blog/playing-hide-and-seek-with-bios-implants.
Accessed: 10/01/2014.

[21] X. Kovah, C. Kallenberg, J. Butterworth, and S. Cornwell. SENTER sandman: Using Intel TXT
to attack BIOS). https://conference.hitb.org/hitbsecconf2014kul/wp-content/uploads/2014/
08/HITB2014KUL-SENTER-Sandman.pdf. Accessed: 6/01/2015.

[22] Lenovo. SMM “incursion” attack. https://support.lenovo.com/us/en/product_security/smm_

attack. Accessed: 6/01/2015.

[23] MITRE. Copernicus binary download. https://www.blackhat.com/docs/us-13/

US-13-Butterworth-BIOS-Security-Code.zip. Accessed: 6/01/2015.

[24] D. Mulnix. Intel trusted execution technology (Intel TXT) enabling guide. https://software.intel.
com/en-us/articles/intel-trusted-execution-technology-intel-txt-enabling-guide#

_Toc383534400. Accessed: 6/01/2015.

[25] D. Mulnix. Intel trusted execution technology (Intel TXT) enabling guide. https://software.intel.
com/en-us/articles/intel-trusted-execution-technology-intel-txt-enabling-guide#

_Toc383534402. Accessed: 6/01/2015.

[26] J. Scahill and J. Begley. ispy: The CIA campaign to steal apple’s secrets. https://firstlook.org/

theintercept/2015/03/10/ispy-cia-campaign-steal-apples-secrets/. Accessed: 6/01/2015.

[27] Nikolaj Schlej. Uefitool source code. https://github.com/LongSoft/UEFITool. Accessed: 6/01/2015.

[28] Loukas K. (snare). De mysteriis dom jobsivs: Mac EFI rootkits. http://ho.ax/De_Mysteriis_Dom_

Jobsivs_Black_Hat_Paper.pdf. Accessed: 6/01/2015.

[29] S. Sparks and S. Embleton. A chipset level network backdoor: Bypassing host-based firewall &
ids. http://clearhatconsulting.com/~clearh7/files/7414/2164/1138/ASIACCS.2009.Chipset.

Level.Network.Backdoor.Bypassing_Host-Based_Firewall__IDS.pdf. Accessed: 6/01/2015.

[30] C. Tarnovsky. Attacking TPM part 2 a look at the ST19WP18 TPM device. https://www.youtube.

com/watch?v=Bp26rPw90Dc. Accessed: 6/01/2015.

[31] Intel Advanced Threat Research team. Chipsec. http://github.com/chipsec/chipsec. Accessed:
6/01/2015.

[32] Kali Linux Team. Kali linux - penetration testing and ethical hacking linux distribution. https:

//www.kali.org/. Accessed: 6/01/2015.

19



How Many Million BIOSes Would you Like to Infect?

[33] Knoppix Team. Knoppix linux boot CD. http://knoppix.net/. Accessed: 6/01/2015.

[34] Tails Team. Tails - privacy for anyone anywhere. https://tails.boum.org/. Accessed: 6/01/2015.

[35] Tails Team. Tails frequently asked questions. https://tails.boum.org/support/faq/index.en.html.
Accessed: 6/01/2015.

[36] A. Triulzi. Project Maux Mk. II. http://www.alchemistowl.org/arrigo/Papers/

Arrigo-Triulzi-PACSEC08-Project-Maux-II.pdf, Tokyo, Japan, 2008. Accessed: 06/01/2015.

[37] R. Wojtczuk and C. Kallenberg. Attacking UEFI boot script. https://frab.cccv.de/system/

attachments/2566/original/venamis_whitepaper.pdf. Accessed: 6/01/2015.

[38] R. Wojtczuk and J. Rutkowska. Attacking Intel TXT. http://invisiblethingslab.com/resources/
bh09dc/Attacking%20Intel%20TXT%20-%20paper.pdf, Washington D.C., USA, 2009. Accessed:
06/01/2015.

[39] R. Wojtczuk and A. Tereshkin. Attacking Intel BIOS. http://invisiblethingslab.com/resources/
bh09usa/Attacking%20Intel%20BIOS.pdf, Las Vegas, USA, 2009. Accessed: 06/01/2015.

9 Appendix A: Shipping Systems Supporting Intel Boot Guard

Intel Boot Guard is a technology which should theoretically improve the security of the static root of trust
for measurement (SRTM), as used in measured boots. Until we are paid to evaluate its actual efficacy, we
will simply assume that it meets its design goals, and does in fact provide an improvement over the measured
boot implementations which we have shown in the past are fundamentally incapable of providing trustworthy
measurements in the presence of BIOS-level attackers[6]. Therefore customers that require higher security
and are using the SRTM for measurement & attestation, or those who wish to have increased trust that a
system like Tails is not subverted from below, should seek out Boot Guard-enabled systems. The following
are the systems that support Boot Guard that we are aware of.

Lenovo ThinkPads systems:

• T440

• T440p

• T440s

• T440u

• T450

• T450s

• T540

• T540p

• T550

• Helix 2nd

• W540

• W541

• W550s

• X1 Carbon (20Ax)
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• X1 Carbon (20Bx)

• X240

• X240s

• X250

• Yoga 15 / S5 Yoga

21


