
Hacking Tizen: The OS of Everything
Ajin Abraham

ajin25@gmail.com
http://opensecurity.in

Abstract

Tizen is a lightweight operating system, which is
built to run on various kinds of devices.
Samsung’s first Tizen based devices were
launched in India on Jan 2015. This paper talks
about the security analysis done on Tizen OS and
explains about Tizen architecture, security model,
application sandboxing, and resource access
control powered by SMACK. It also explains the
vulnerabilities identified in Tizen OS during the
research which are responsibly disclosed to Tizen
community.

Introduction

Tizen is an open and flexible operating system
built from the ground up to address the needs of
all stakeholders of the mobile and connected
device ecosystem, including device, application
developers, manufacturers, mobile operators, and
independent software vendors (ISVs). Tizen is
developed by a community of developers, under
open source governance, and is open to all
members who wish to participate.[1]
 – Tizen.org

The Tizen operating system comes in different
flavours including Tizen IVI (in-vehicle
infotainment), Tizen Mobile, Tizen TV, and
Tizen Wearable. Like Android, Tizen is an
operating system built on top of the Linux kernel
and is supported by The Linux Foundation.

It brings up the concept of Internet of Things (IoT)
or Smart Home and is buzzed as The OS of
Everything. This new operating system is
powered by Intel and Samsung with support of the
major technology, hardware and mobile network
companies like LG, Fijitsu, Intel, vodafone,
docomo, kt, SK telecom etc and this list keeps
changing. This paper describes the research
done on Tizen operating system 2.2 and Tizen IVI
3.0.

Types of Tizen Applications

Fig 1: Types of Tizen Application

Applications in Tizen can be written with native
code using C/C++ or HTML5/JavaScript/CSS.
Like other mobile platforms, Tizen supports three
kinds of applications.

• Native Applications
• Web Applications
• Hybrid Applications

Native Application – These applications are
written in C/C++

Web Application – These are applications
written on HTML5/JavaScript/CSS

Hybrid Application – Hybrid Applications are
those having web component as well as a native
component.

Tizen Architecture

Fig 2: Tizen Architecture

The Tizen architecture as shown in Fig 2 consist
of three layers. At the bottom we have the Linux
Kernel & Drivers. On top of that, we have the
Tizen Core layer which act as an interface
between Application Framework layer and the
Kernel layer. It facilitates access to device
hardware and other features [2].

The Application Framework in the Core layer,
contains all the middleware, hardware-related
services and provides the set of APIs needed for
developing Native, Web or Hybrid Apps.

The Framework includes Tizen Native Framework
that facilitate the running of Native and Hybrid
Applications and the Tizen Web Framework which
provides the Web Runtime (WRT) where the Web
Applications run. The Web Apps make use of
Web API which consist of HTML5 API’s as well as
a set of Device APIs provided by Tizen which is
protected by Content Security Policy (CSP) and
Privileges.

Fig 3: Tizen Web API

The Web API also includes Miscellaneous APIs
like WebGL, Vewport Metatag, Typed Array etc.

Tizen Application Structure

As Tizen Applications are available in three
different format, they follow diiferent directory
structures. All the user developed Apps are
installed under /opt/usr/apps/

Native Application Structure

Fig 4: Tizen Native Application Structure

The Tizen Native Application is having .tpk
extention which is a zipped package with different
directories like bin, which contains the executable
and the manifest file where privileges, and other
information about the app are defined. It also
contains other required resources under res and
libraries under lib etc. On installation of the TPK,
the contents of the package are extracted to
“/opt/usr/apps/<pkg_id>/” where pkg_id is a

unique identifier of length 10 containing alphabets
and numbers called AppId/AppName.

Web Application Structure

 Fig 5: Tizen Web Application Structure

The Web Application is having the extension .wgt
and is a zipped package containing the HTML,
CSS, JavaScript and config.xml under the wgt
directory. On installation of the wgt file, the web
applications are extracted into
“/opt/usr/apps/<pkg_id>/res/wgt/”

Hybrid Application Structure

Fig 6: Tizen Hybrid Application Structure

Hybrid Applications contains both binaries as well
as the Web content and comes with TPK
extension. It is also a zipped package containing
both the directories in a Native App and a Web
App.

Tizen Security Model

Like permissions in Android, Tizen uses privileges
to enforce a least privilege model. In addition to
that Tizen make use of application signing, and
sandboxed running of process using its sandbox
called SMACK [3].

The main principles of this Security Model are:

• Non root applications

o All applications run under same non-
root user ID.

o Most of the middleware and daemons
will run as non-root user.

• Application Sandboxing

o All applications are sandboxed by
SMACK.

o An application is allowed to read/write
files in it’s home directory and shared
media directory (/opt/usr/media)

o Each application is unable to send IPC
and sockets, r/w other application files.

• Content Security Framework (CSF)

o Set of APIs/hooks used to create
security-related services.

o These are intented for AV Solutions.
o Two types of engines: Scan Engine

and Site Engine.
o Scan Engine scans Data and

Application for malicious behaviour.
o Site Engine scans URLs and blocks

malicious URLs.

• Application Sigining

o Application can be signed by Authors
as well as Distributors.

• Permission Model/Least privilege

o All applications will have
manifest/config file describing
privileges.

o Native apps use manifest.xml
o Web apps use config.xml
o Manifest file describes SMACK labels

and rule as well.

• Content Security Policy for Web Apps

o For Web Applications, Policy or
Content Security Policy is defined in
the config.xml file.

• Encrypt HTML/JS/CSS stored in Device

o Encrypts at Install time and decrypts at
runtime.

SMACK: Simplified Mandatory Access
Control Kernel

Tizen’s sandbox is caled as Simplified Mandatory
Access Control Kernel (SMACK). The basic rule
of application sandbox is “what's mine is mine;
what's yours is yours.” SMACK allows you to
add controlled exception to this basic rule.
SMACK is a kernel level Linux security module
that determines how processes interact each
other. In Tizen, every application has its own
SMACK label. These labels identify the
application and provide access controls [4].

SMACK Terms:

• Subject ! Any Running Process (Have
Smack Label)

• Object ! File, IPC, Sockets, Process
• Access ! Read (r), Write (w), Execute

(e), Append (a), Lock (l), Transmute (t)

In SMACK, the subject can only access an object
if the labels match or if there exist a permission
that grant access to the requested resource. A
subject is an active entity while an object is a

passive entity, which include files, directories,
IPC, sockets and process.

Fig 7: SMACK Sandbox

SMACK ensures that applications are sandboxed
and one application cannot access the files and
data of other application and vice versa. However
SMACK allows controlled exceptions to this.

The interesting thing about SMACK rules is that
Tizen got about 41,000 SMACK rules in Tizen
version 2.2.1. The number of SMACK rules is so
huge that, there is a high chance that developers
may mess up. So in Tizen 3 onwards they will
introduce Cynara [5] and a Smack Three domain
Model.

Privileges

For Tizen applications, privileges are like
permissions for Android applications. In order to
use different APIs, appropriate privileges should
be defined.

Fig 8: manifest.xml in Native Applications

For native applications, privileges are defined in
the manifest.xml file

Fig 9: config.xml in Web Applications

For web applications, privileges are defined in
config.xml file.

Fig 10: API-Privilege Requirement in Tizen

For example, In order to invoke a device Web
API, the necessary privileges should be declared
in the config.xml file [6]. A hybrid application
contains both manifest.xml and config.xml file.

There are three levels of privilege:

• Public privileges: These privileges are
open to Tizen application developers.

• Partner privileges: These privileges can
only be used by developers that are
registered as partners on the Tizen Store.

• Platform privileges: These privileges are

used by system APIs and are accessible
only to a specific set of Tizen developers.

Webkit2 on Tizen

Tizen Web Runtime (WRT) is based on WebKit2
on top of which, the web apps run [7]. WebKit2 is a
new API layer over WebKit. It supports split
process model like the Google Chrome tabs. In
Chrome, each tab is a separate independent
process, similarly in Tizen WRT, every web
application run as a separate process. So if
anything goes wrong in one process, it should not
affect other running processes.

Fig 11: WebKit Vulnerability Analysis

In WRT, every web app runs inside a sandbox.
One of the main reasons is that WebKit is known
to have a lot of vulnerabilities. A lot of them are
still being reported and coming up. To prevent the
impact of these, Tizen make use of the split
process model and the application sandbox.

Comparison with Android and iOS

Android Tizen iOS
1. Apps identified by
UID

2. Permission Model:
AndroidManifest.xml

3. IPC: Using Binder

4. Sandbox: SELinux

5. Signed: Signed by
Developer

1. Users identified
by UID (app)

2. Permission
Model: manifest.xml
& config.xml

3. IPC:
MessagePort IPC
using socket.

4. Sandbox: SMACK
& CSP

5. Signed: Signed
by Developer &
Distributor

1. All Apps run
under user “mobile”.

2. No permission
model. Ask for
Permissions at
Runtime.

3. IPC: URL
Schemes, x-callback
URL, Extension,
XPC based IPC.

4. Sandbox:
Powerbox, Seatbelt

5. Signed: Signed
by Distributor

Security Issues in Tizen

This section covers the security issues identified
in Tizen during the research.

Attack Surface of over privileged Apps:
Android Web Apps vs. Tizen Web Apps

Fig 12: Android Web Apps vs. Tizen Web Apps

Consider an over privileged Android web app and
a Tizen web app. In Android, web applications
leverage device functionalities by making use of
the JavaScript bridge (addjavascriptinterface)
where developer has to expose device
functionalities to the bridge by exposing the API
that corresponds the device functionality. The

required permissions should be described In the
AndroidManifest.xml for the exposed device API.

In Tizen the difference is that the developer
doesn’t have to write or expose the API to the
bridge. The device APIs are already defined and
implicitly exposed to the bridge. To access these
APIs, proper privileges should be defined. Also
they have CSP to restrict out bound access.

Now say if the application is over privileged, for
example, the NFC permission is an unwanted
permission or privilege declared both in Android
and Tizen Application. Say suppose an XSS
occurs in the context of the web app or else an ad
page that works inside the context, then attack
surface on Tizen is greater than that in Android.

Fig 13: Attack Surface: Android Web Apps vs.
Tizen Web Apps

In Android, the vulnerability can take advantage of
Bluetooth in the device as the permission is there
and the developer exposes the API to bridge, but
couldn’t access NFC even though the permission
is defined. The reason for this is that the API is
not explicitly exposed to the bridge by the
developer.

But in the case of Tizen, all the Device APIs are
already available and are implicitly exposed. So
since the Bluetooth and NFC privileges are
defined, such vulnerability can access both
Bluetooth and NFC.

Issues in OS Memory Protection: DEP and
ASLR

Data Execution Prevention (DEP) is a security
feature that marks the stack as non executable.
So when malicious code is on the stack, it won’t
get executed due to DEP. During the analysis of
the OS memory protection mechanisms, it was
found that DEP is not seen/working in Tizen.

Fig 14: Exit Shellcode in Action

From the above figure, it is clear that the exit
shellcode is loaded into the stack got executed.
This verifies that Data Execution Prevention is
either not there or not working as expected.

Address Space Layout Randomization (ASLR)
is another memory protection technique that
prevents reliable exploitation by rebasing the
ASLR enabled modules on each run. As per the
documentation, it says ASLR is fully implemented
in Tizen 2.1 itself. It was found that ASLR was
broken in Tizen 2.1 by a researcher named
Shuichiro Suzuki [8]. He found out that even
though ASLR was enabled as per
/proc/sys/kernel/randomize_va_space which is
set to 2, but the personality value in
/proc/self/personality is set to 00040000 which
corresponds to (ADDR_NO_RANDOMIZE) and
disables ASLR. This issue was patched in Tizen
2.2. During the analysis, it was found that
/proc/self/personality is now set to 0000000,
which was nowhere documented as such. To
verify whether ASLR works, a sample application
was compiled with –fPIE flag which corresponds
to Position Independent Executable. This flag

marks the executable as ASLR enabled. To test
for the validity of ASLR, the application was run
twice and the consecutive memory maps
available under /proc/pid/maps were observed.

Fig 15: Memory Maps of the same application run
twice.

As shown in the above figure, it was found that all
the address of heap, stack and main modules
remains the same which means ASLR is not seen
in action.

Issues in the Stock Tizen Browser

A security analysis of Tizen’s Stock browser,
which is based on WebKit, was done and couple
of issues was identified.

URL Spoofing and Content Injection

A WebKit bug was identified on the stock Tizen
2.2 browser that allows attacker to open a new
tab with any URL and inject arbitrary data into the
tab. The PoC code that triggers the bug is shown
below.

<script>	

w=window.open('https://facebook.com/');	

w.document.write("<h1>You	
 've	
 been	

Hacked</h1>");	
 w.focus();	
 	

</script>

Fig 16: PoC of URL Spoofing and Content Injection

URL Spoofing and Content Injection are shown in
the above figure.

Bypassing Content Security Policy

Another WebKit bug was identified on Tizen Stock
browser that bypasses Content Security Policy
(CSP).

We create a page with the CSP Content-
Security-Policy: default-src 'self'; script-src
'self' which means load everything from same
domain and load scripts from same domain.

Following is the PoC code for CSP Bypass

<script>
a=document.createElement('script');a.id='x';
a.src='\u0000https://rawgit.com/ajinabraham/P
oC/master/script.js';
document.body.appendChild(a);
</script>

Here we create a script tag with JavaScript null
byte prepended to the URL in the script src. This
tricks the browser’s JavaScript parser and load
the script from a different domain (rawgit.com)
and CSP get bypassed. The JavaScript file
https://rawgit.com/ajinabraham/PoC/master/script.
js contains the code that pop up an alert dialog.

Fig 16: PoC of CSP Bypass

The above figure shows that CSP is bypassed.

Pentesting Methodologies

Penesting of Tizen Application includes the
following methodologies

• Whitebox: Access to source code and
knowledge about the application.

• Blackbox: No access to source code and
no idea about the application.

We again classify this process into

• Static Analysis
• Dynamic Analysis
• Network Analysis

Static Analysis

The Static Analysis starts with the TPK or WGT
file. As mentioned before both are zipped
packages. Inside TPK you will find the executable
under bin directory. It is compiled using LLVM-
3.1, which makes use of clang or clang++.

Certificate Analysis

The certificate information is available in two files.

• author-signature.xml – This file contains
the developer signature.

• signature1.xml – This file contains the
distributor signature.

The signature information can be extracted using
tizen_certificate_parser.py [9].

Manifest Analysis

The manifest/config file can be found at
<unzipped_package>/info/manifest.xml for TPK
and <unzipped_package>/config.xml for WGT.

During manifest analysis, proper checks should
be made for over privileges, improper CSP/Policy
and SMACK rules. Code Review is the most
important part of Static Analysis. In a whitebox

approach it’s pretty straight forward as the source
code is available. But if it’s a blackbox approach
then the situation changes with a TPK as it
contains clang/clang++ compiled binaries. Futher
analysis is possible only after decompiling the
binary. The decompilation of the binary into C and
ASM can be done using retdec API[10]. To
decompile the binary, use the python script
,tizen_tpk_decompiler.py [11].

Following are some of the things that you should
check while doing a code review.

• Weak Encryption/Crypto
• Hardcoded plaintext information
• Logging sensitive information
• SSL overriding/bypass
• Possible client side SQLi, XSS etc.

Most of the issues can be categorized under
OWASP Mobile Top 10 [12].

Dynamic Analysis

For Dynamic Analysis, we can run the App in
Tizen VM, Web Simulator or Tizen Device. Tizen
SDK comes with various tools to make our job
easier. It contains tools like Secure Debug Bridge
(SDB) which is similar to Android’s Android Debug
Bridge and highly useful tool named Dynamic
Analyzer which show us information about the
process, file operations, thread information, UI
flow etc. For logging, Tizen uses dlog, which is
similar to Android’s logcat. Once the application
is installed on the device, file analysis can be
done which includes check for uncessary
permissions on the application directories and
files.

Network Analysis

To perform Network Analysis packet capturing or
traffic interception has to be done. To analyze
HTTPS traffic we need to configure a proxy
through Settings -> WiFi and configure the Proxy.

Proxy certificate can be installed from SD card
through Settings -> About device -> Manage
certificates -> User certificates -> Install.
The certificate is installed as a user certificate.

Fig 17: Install certificates into Trusted Certificate Store

You can install the certificate into the trusted
certificate store as well. The trusted certificates
are stored under /etc/ssl/certs/ with filename in
the format <8HEXChars.0>. The certificate is in
PEM format. To install a certificate into trusted
certificate store, we need root access. Copy the
CA certificate to /etc/ssl/certs/ directory to make
it trusted. Once we are able to intercept the traffic,
we can rely on OWASP Top 10 Web Risks [13] for
testing the web service and the server.

Security Concerns in Tizen

Some of the security concerns of Tizen are given
below

• Tizen uses WebKit. A lot of security bugs
are uncovered in WebKit and that will
affect the future of Tizen as well. The use
of WebKit2 with split process model will
provide some level of sandbox on the
process which is a reasonably way of
protecting from the possible issues.

• Unlike Android where developer explicitly
needs to expose the device APIs to the
JavaScript Bridge, the device Web APIs
are implicitly defined in Tizen and this will
increase the attack surface. So compared
to Android an unused or extra privilege
and an improper CSP can cause a

comparatively higher threat in Tizen if
XSS/third-party script executes in the App
context.

• Another issue with Tizen 2.2 is there is too
much of SMACK rules. Hence there is
high chance that developers may mess up
and this will not give the right result as
expected.

Conclusion

Tizen OS had put a lot of efforts in creating a
highly efficient Security Model/Architecture
compared to other similar lightweight operating
systems. But at some point, they made it so
complex that people can easily mess up, like
SMACK rules. And couple of implementation
issues that are identified during the research
exists in Tizen. But the platform looks promising,
as they have given high priority to Security.

Reference

[1] Tizen. https://www.tizen.org/, April 2014.

[2] https://developer.tizen.org/dev-
guide/2.2.0/org.tizen.gettingstarted/html/tizen_ove
rview/tizen_architecture.htm

[3]
https://wiki.tizen.org/wiki/Security/Tizen_2.X_Secu
rity_Model

[4] https://wiki.tizen.org/wiki/Security:Smack

[5] https://wiki.tizen.org/wiki/Security:Cynara

[6]
https://wiki.tizen.org/wiki/Security/Tizen_2.X_Privil
eges

[7]
http://download.tizen.org/misc/media/conference2

012/wednesday/ballroom-c/2012-05-09-1100-
1140-webkit-efl_and_webkit2-efl.pdf

[8] Shuichiro Suzuki,
www.ffri.jp/assets/files/monthly.../MR201305_Tize
n_Security_ENG.pdf

[9] https://github.com/ajinabraham/tizen-
security/blob/master/tizen_certificate_parser.py

[10] https://retdec.com/api/

[11] https://github.com/ajinabraham/tizen-
security/blob/master/tizen_tpk_decompiler.py

[12]
https://www.owasp.org/index.php/Projects/OWAS
P_Mobile_Security_Project_-
_Top_Ten_Mobile_Risks

[13]
https://www.owasp.org/index.php/Category:OWA
SP_Top_Ten_Project

