
Introduction	
  
Abstract	
  
Broadcom wireless cards for mobiles devices, specifically the Broadcom line 
BCM4325/29/30/34 are the most common wireless cards found in most 
popular smartphones & tables (iPhone/iPad, Samsung, Nokia, Motorola and 
HTC among others). Even with such an installed base and being a key client 
component in any wireless network -at least any Wi-Fi network where mobile 
devices participate- not much has been said about such cards. Previous 
research, in this area includes approaches to modify the firmware to enable 
monitor mode and raw 802.11 traffic injection in popular smartphones [1, 2]. In 
those occasions most of the work was performed by static firmware reverse 
engineering. In this paper, we will describe how to get a more dynamic 
approach to analyze the behavior of the firmware execution on the network 
card CPU. 
 
Background	
  
Network card firmware analysis and attacks are not new. Several previous 
works were published in this area: Debugger and Rootkits were developed [3] 
cards were modified to pivot attacks to other peripherals through DMA or even 
abuse the PCI BUS to create a P2P hardware attack [4] (i.e. attack a video 
card by communicating directly from the network card), specific vulnerabilities 
were discovered that provided remote attack vectors [5] among others. In this 
paper, however, we will focus on 802.11 Wi-Fi network cards for mobile 
devices and present a tool that will allow us to perform dynamic analysis of 
the card firmware. Specifically, a limited tracer will be created. It is our hope 
that, by making such tools available, further research will be conducted. 
 
Objectives	
  
Our main objective is to provide a mechanism to inspect execution states of 
the network card at different code points in a way that is, as much as possible, 
independent of a specific model, version and mobile device operating system. 
It is important to achieve this portability, because the daunting speed of 
device development makes devices obsolete rather quickly. Additionally, 
aggressive competition among mobile device vendors creates the need to 
constantly introduce the latest 802.11 features thus new network card models 
are constantly being introduced. Furthermore market share of mobile devices 
can shift in short time frames, tying our approach to a specific vendor might 
render it irrelevant in the near future.  
 
Architecture	
  	
  
These types of network cards communicate with the host (mobile device) over 
a SDIO bus. The card itself consist of a main CPU, generally ARM Cortext M3 
or R4, a limited amount of volatile RAM memory to support the firmware 
execution and persistent ROM storage. Additionally, the low level functionality 
is grouped into several functional modules called cores. A number of cores 



provide the low level functionality such as: PHY/MAC layers, chip specific 
setup, d11 core that implements certain aspects of the 802.11 protocol. Cores 
communicate over memory mapped registers and DMA with the network card 
firmware. It is important to note that this DMA is internal to the network card 
itself and as such the NiC device is not provided access to the host device 
memory. This layout is illustrated by the following figure: 
 

	
  
Figure	
  1:	
  Logic	
  diagram	
  of	
  the	
  cad	
  structure 

The	
  firmware	
  	
  
The firmware for the card consists of two sections or regions containing both 
data and code. A first region is loaded by the host (mobile) device into the 
card volatile RAM, by a process called firmware upload; we will call this 
"Region 1". The second region is non-writable and is part of an EPROM type 
memory. The firmware code for Region 1 is protected by a simple CRC 
checksum for integrity, modification of this region is simple and has been 
previously demonstrated [1].  
 
Communication	
  
As mentioned before, the mobile device OS (iOS/Android/Windows) wireless 
driver communicate with the Wi-Fi card over an SDIO bus. This bus has 
different capabilities like SPI-mode, but in this case there are no DMA 
capabilities involved. However, a higher-level protocol is layered on top of this 
bus, which enables communications by means of a set of IOCTLs commands. 
It is important to differentiate these IOCTLs from those exposed on the user-
mode to kernel-mode boundary, to differentiate we will code the first 
"Firmware defined IOCTL" and the later "user-to-kernel IOCTL".  The following 
figure illustrates the communication. 



	
  
Figure	
  2:	
  IOCTL	
  messages	
  send	
  at	
  different	
  layers 

 

Proposed	
  Solution	
  
In order to accomplish our objective of remaining as card neutral as possible, 
we will modify the firmware implementation of the Firmware defined IOCTLs. 
Our modification is going to introduce two new IOCTL commands that will 
allow us to read and write memory respectively. Even though we will need to 
perform this step individually and rather manually on each specific network 
card version and model, once this read-and-write interface is provided we will 
be able to work uniformly with different card models and versions across 
different operating systems. In other words, this would be the only version 
specific modification we propose; the rest of out implementation will be 
portable. 
 
Our first step will consist of identification of the firmware defined IOCTL 
handler code on the firmware program, this is, find the code that processes 
the received IOCTL command at the firmware. In order to accomplish this 
task, we will first disassemble the firmware (see [1] for details of how to 
proceed). We will rely on IDA Pro to accomplish this, once we have the 
disassembled version Region 1 of the firmware program, the simplest way to 
identify this portion of code is simply to search for all switch idioms within the 
disassembly. The IOCTL handler typically resides in Region 1, and consists of 
a switch with about 300 “cases”.  
 

	
  
Figure	
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Once we have identified such code, we will then proceed to modify it in order 
to add two new IOCTL functions: memory read and write operations. This can 
be accomplished, for example, by placing our own code over one of the 
firmware strings, then modifying the firmware code that handles the IOCTL to 
implement a hook, this means to jump to our code that was placed over a 
string. For example, for iOS 8.1.2 at iPhone 5s, we would modify the string 
“smdebug=%08x,phydebug=%08x,psm_brc=%08x\nwepctl=%” (debug string 
that is not normally being used by the firmware) so that it is overwritten with 
the following code: 
 
0004B6C4    read_write_impl  
0004B6C4      CMP.W   R1, #0xFA00 ;Read cmd code 
0004B6C8      BEQ     read_cmd     
0004B6CA      CMP.W   R1, #0xFB00 ;Write cmd code 
0004B6CE      BEQ     write_cmd    
0004B6D0      MOV     R7, R0 
0004B6D2      MOV     R6, R1 
0004B6D4      BX      LR   
0004B6D6    ; ---------------------------------- 
0004B6D6 
0004B6D6    read_cmd     
0004B6D6      MOV     R0, R2 
0004B6D8      LDR     R1, [R2]     
0004B6DA      LDR     R2, [R2,#4]  
0004B6DC      B       done 
0004B6DE    ; ---------------------------------- 
0004B6DE 
0004B6DE    write_cmd    
0004B6DE      LDR     R0, [R2]     
0004B6E0      ADDS.W  R1,  R2,#8   
0004B6E4      LDR     R2, [R2,#4]  
0004B6E6 
0004B6E6    done 
0004B6E6      LDR     R3, =(memcpy+1)  
0004B6E8      BLX     R3 ; memcpy  
0004B6EA      MOVS    R0, #0 
0004B6EC      POP.W   {R2-R8,PC}   
0004B6EC    ; END OF FUNCTION read_write_impl 
0004B6EC    ; ---------------------------------- 
0004B6F0  DCD memcpy+1 
 
At this point the firmware now supports two new messages that read and write 
to arbitrary memory locations. One way to get these new messages to be 
executed would be to modify the host (mobile device) driver so that it sends 
these new messages, however this would result in dependency on the 
operating system, in other words, we would need to create patches for the 
drivers of each of the mobile devices we want to support. In order to avoid this 
dependency, we will rely on an existing user-to-kernel IOCTL that is already 
implemented by Broadcom’s drivers within the Operating System kernel. This 
particular IOCTL, will allow us to send custom messages from user-space, 
these messages will be encapsulated over the SDIO bus protocol to finally be 
handled by the firmware. Minor differences exits for each operating system, 



but the differences are not complex to manage. 
 
For the Apple case we will be using SIOCSA80211, and within the payload of 
this IOCTL we will send the message APPLE80211_IOC_CARD_SPECIFIC. 
For the Android case we will be using SIOCDEVPRIVATE. These 
combinations will allows us to send "firmware defined IOCTL's" over user-to-
kernel IOCTL's. To clarify: we will be sending an IOCTL inside an IOCTL. 
These messages will let us communicate with our firmware primitives read 
and write. Once we have done this, we will continue by developing user space 
code, we have chosen python as our language of choice, that will rely on 
these read and write primitives in an OS independent and firmware version 
independent manner. 
 
We will then build read and write primitive wrappers in python. These 
wrappers simply send the relevant user-to-kernel IOCTLs. At this point we can 
move forward with the development of our tracing tool. The tracing tool will 
provide hooking functionality in a similar manner to the implementation of the 
read and write function. Whenever inspection of the value of a register or 
memory location at a specific code address is desired, our tracer will hook this 
address so that a jump to the handler code is injected. The handler will then 
copy the value contained by the register or address of interest to the storage 
area. The relevant portions of the tracer code look like this: 
   
from rawio import read, write 
import bcalc 
import struct 
 
class Tracer: 
    HookAddr   = 0x4B6F4 # (4334- iphone 5s- 8.1) 
    DataAddr   = 0x4B72C  
     
    def __init__(self, point, register): 
        self.point = point 
        self.register = register 
        self.sizeOfData = 0x10 # Size of our storage. 
 
        def createHook(self, pointCode): 
        code = ( 
            "00BF" #   NOP ; placeholder for the  
            "00BF" #   NOP ; instructions smashed by jmp. 
            "07B4" #   PUSH    {R0-R2} 
            "00BF" #   NOP ; placeholder for a mov. 
            "0449" #   LDR     R1, =DataAddr 
            "0A68" #   LDR     R2, [R1] 
            "102A" #   CMP     R2, #0x10 
            "02D0" #   BEQ     done 
            "0432" #   ADDS    R2, #4 
            "0A60" #   STR     R2, [R1] 
            "8850" #   STR     R0, [R1,R2] 
                   #   done 
            "07BC" #   POP     {R0-R2} 



            "7047" #   BX      LR 
            "0000" #   align 
                   # "A02C0200" ; DataAddr goes here. 
            ).decode('hex') 
        code += struct.pack("<L", self.DataAddr) 
         
        code = code.replace('\x00\xbf\x00\xbf', pointCode) 
        code = code.replace('\x00\xbf', self.assembleMov()) 
        return code 
             
    def hook(self): 
        # Setup data region 
        self.dataBackup = read(self.DataAddr, self.sizeOfData) 
        write(self.DataAddr, '\x00' * self.sizeOfData) 
         
        # Setup code region 
        self.pointBackup = read(self.point, 4) 
        hookCode = self.createHook(self.pointBackup) 
        self.hookBackup = read(self.HookAddr, len(hookCode)) 
        write(self.HookAddr, hookCode) 
 
        # Setup hook call 
        write(self.point, bcalc.bl(self.point, self.HookAddr)) 
 
Tracer constructor simply stores the address of the code on which we are 
interested to inspect the state (point address) together with the register of 
interest. Function CreateHook, will create the code that we will call from the 
point of interest. This code gets rendered by: assembling a mov instruction is 
to copy the contents of the register of interest to “R0”, replacing the first to 
NOP instruction with the code that was originally at the point of interest 
appending the storage area address were we will be storing the values. 
Function hook creates a backup of the data stored at the addresses that we 
will be using as storage and initializes the area with zeros, reads the 
instructions that will be replaced by the call to our hook (pointBackup). The 
rendered code is placed at the defined address and finally the code at the 
point of interest is replaced by a branch-with-link (call) instruction. 
 
This basic tracer is not without its limitations: 1. Since code at the trace point 
will be relocated, instructions that are not position independent can’t be 
traced. 2. Instructions that depend on the previous state of the CPU status 
flags will not have the expected behavior. 3. Since branch-with-link instruction 
was used (call) the link will be overwritten and wont have a meaningful value. 
4. Since the instructions at the tracepoint are replaced, the tracer will only 
work for addresses that we are able to write at.  
 
We can address these limitations in different ways, we consider the most 
relevant to be 4. As was mentioned before the entire code on Region 2 is not 
writable this limits our tracer to Region 1. In order to provide a more dynamic 
analysis of the code on Region 2, we need a way to address such limitation. 
 
To accomplish our objective, we will rely on a feature present on the Cortex-



M3 (the micro processor used on most of the mentioned cards) called 
FlashPatch breakpoint [6]. The FPB unit allows, by means of a remap table, 
interception of the opcodes when the fetch operation of the fetch-decode-
execute cycle is being carried out. As described in the documentation, by 
setting up a remap table, the comparator registers and enabling the FPB unit 
by means of the FP_CTRL register we can create the intended effect of a 
“flash patch”, this is modification of non-writable code.  
 
Furthermore we consider the FPB feature of these CPUs to be of interest in 
relation to the analysis of code integrity from a security perspective. The 
configuration of this unit allow us to “modify” code that was considered read-
only, additionally since the FPB unit works by altering the fetch process and 
since these CPUs Cortext M3 processors use different internal buses for data 
and code reads (See Figure	
   4) a situation in which the executed code is 
different from the code that can be read as data by the very CPU is achieved. 
This situation allows for the possibility of a non-persistent rootkit: This rootkit 
would work by modifying the execution of the firmware at certain addresses 
and yet reading the firmware memory at those addresses will not reveal the 
modification. A protection against such condition might rely on detecting the 
remap table in memory, however it was discovered by experimenting with the 
FPB that the remap table itself can be remapped. This results in correct 
operation of the FPB feature while hiding the remap table. Ultimately, the 
detection of this hiding technique can be accomplished by inspection of the 
FP_CTRL register. The address of this control register cannot be remapped 
since the comparator register does not allow for addresses that go as high as 
the necessary addresses.  
 

	
  
Figure	
  4:	
  Logical	
  diagram	
  of	
  the	
  Cortex	
  M3	
  and	
  its	
  components	
  [7] 

 



Continuing with the tracer, we have now achieved tracing capabilities of the 
code in both memory regions. Since the configuration of the FPB unit only 
consist of memory mapped registers and we already had write primitives that 
could be used for our purposes, we can implement this functionality by simply 
writing to the adequate memory addresses that are required. We will use this 
new development to study 802.11 handling code. 
 
Finally, in order to inspect code of interest we need to point our tracer python 
program to the address(es) that we are interested in evaluating, together with 
the register we are interested to obtain. A full example of this can be found 
under the appendix of this document. 
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IOCTL.PY	
  
#!/usr/bin/env python 
 
import ctypes 
import socket 
import struct 
import subprocess 
 
# Apple ioctl codes # 32bit 
SIOCGA80211 = 0xC02069C9 
SIOCSA80211 = 0x802069C8 
 
 
# broadcom wl_ioctl codes 
WLC_MAGIC       = 0 
WLC_GET_VERSION = 1 
WLC_GET_CHANNEL = 29 
WLC_SET_CHANNEL = 30 
WLC_GET_RADIO   = 37 
WLC_SET_RADIO   = 38 
WLC_GET_VAR     = 262 
WLC_SET_VAR     = 263 
 
class apple80211req(ctypes.Structure): 
    _fields_ = [("ifname",   ctypes.c_char * 16), 
                ("req_type", ctypes.c_int), 
                ("req_val",  ctypes.c_int), 
                ("req_len",  ctypes.c_uint), 
                ("req_data", ctypes.c_void_p)] 
 
def wl_ioctl(cmd, buff=''): 
    req = apple80211req() 
    req.ifname   = "en0\0" 
    req.req_type = APPLE80211_IOC_CARD_SPECIFIC 
    req.req_val  = cmd 
 
    if len(buff) != 0: 
        buff         = ctypes.create_string_buffer(buff) 
        req.req_data = ctypes.cast(buff, ctypes.c_void_p) 
        req.req_len  = len(buff) - 1 
    else: 
        buff         = ctypes.create_string_buffer(4) 
        req.req_data = ctypes.cast(buff, ctypes.c_void_p) 
        req.req_len  = 4 
 
    libSystem = 
ctypes.cdll.LoadLibrary("/usr/lib/libSystem.B.dylib") 
    s = socket.socket() 
    if libSystem.ioctl(s.fileno(), SIOCSA80211, ctypes.byref(req)) 
!= 0: 
        libSystem.__error.restype  = ctypes.POINTER(ctypes.c_int) 
        libSystem.strerror.restype = ctypes.c_char_p 
        errno = libSystem.__error().contents.value 
        raise Exception("ioctl error: %s" % 
libSystem.strerror(errno)) 
 
    s.close() 
    return ''.join(x for x in buff) 
 



def test_ioctl(): 
    magic = wl_ioctl(WLC_MAGIC) 
    return (struct.unpack("<L", magic)[0] == 0x14e46c77 and  
            struct.unpack("<L", wl_ioctl(WLC_GET_VERSION))[0] == 1) 
 
 
def get_channel(): 
    """ returns (current, target, scan) channels """ 
    chan = wl_ioctl(WLC_GET_CHANNEL, '\x00' * 12) 
    return struct.unpack("<LLL",chan[:-1]) 
 
def set_channel(number): 
    wl_ioctl(WLC_SET_CHANNEL, struct.pack("<L", number)) 
 
def get_radio(): 
    return struct.unpack("<L", wl_ioctl(WLC_GET_RADIO))[0] 
 
def set_radio(status): 
    mask = 7 
    status = struct.pack("<l", (mask << 16) | status) 
    wl_ioctl(WLC_SET_RADIO, status) 
 
def get_intvar(var): 
    return struct.unpack("<L", wl_ioctl(WLC_GET_VAR, var + 
'\0')[:4])[0] 
 
def set_intvar(var, val): 
    wl_ioctl(WLC_SET_VAR, var + '\0' + struct.pack("<L", val)) 
 
 
if __name__ == "__main__": 
    if not test_ioctl(): 
        raise Exception("test failed") 
    else: 
        print 'test ok' 
	
  
	
  
RAWIO.PY	
  
import ioctl 
import struct  
 
def read(addr, length): 
    buf = struct.pack("<LL", addr, length) 
    buf += "\x00" * (length - len(buf)) 
    return ioctl.wl_ioctl(0xfa00, buf)[:length] 
 
def write(addr, data): 
    buf = struct.pack("<LL", addr, len(data)) 
    buf += data 
    ioctl.wl_ioctl(0xfb00, buf) 
 
if __name__ == "__main__": 
    print read(0x4B6AB, 8) 
     
 
 
 
FPBTRACE.PY	
  
from rawio import read, write 



import bcalc 
import struct 
import time 
 
class Hook: 
    def __init__(self, point, hookAddr, dataAddr): 
        self.point = point 
        self.pointCode = read(point, 4) 
        self.hookAddr = hookAddr 
        self.dataAddr = dataAddr 
 
    def registerNumber(self, register): 
        regNum = register[1:] 
 
        try: 
            ret = int(regNum) 
        except ValueError, e: 
            if register.upper() == 'SP': 
                ret = 13 
            elif register.upper() == 'LR': 
                ret = 14 
            else: 
                raise ValueError('Unknown Register:' + register) 
 
        return ret 
 
    def assembleMov(self, dst, src): 
        mov = '\x00\xbf' # nop 
        srcReg = self.registerNumber(src) 
        dstReg = self.registerNumber(dst) 
 
        if srcReg >= 0 and srcReg <= 7: 
            mov = chr((srcReg << 3) | dstReg) + '\x00' # 08 00 -> 
movs r0, r1; 10 00 -> movs r0, r2 ... etc 
        elif srcReg > 7 and srcReg <= 14: 
            srcReg -= 8 
            mov = chr(0x40 | (srcReg << 3) | dstReg) + '\x46' # 40 
46 -> mov r0, r8; 48 46 -> mov r0, r9 ... etc 
        else: 
            raise ValueError('Invalid register number:' + 
self.register) 
 
        return mov 
 
    def render(self): 
        raise NotImplementedError() 
 
class RegisterHook(Hook): 
    def __init__(self, point, hookAddr, dataAddr, register): 
        Hook.__init__(self, point, hookAddr, dataAddr) 
        self.register = register 
 
class RegisterMov(RegisterHook): 
    def render(self): 
        code = ( 
            "00BF"     #   NOP 
            "00BF"     #   NOP 
            "07B4"     #   PUSH    {R0-R2} 
            "00BF"     #   NOP 



            "0449"     #   LDR     R1, =sub_22CA0 
            "0A68"     #   LDR     R2, [R1] 
            "102A"     #   CMP     R2, #0x10 
            "02D0"     #   BEQ     done 
            "0432"     #   ADDS    R2, #4 
            "0A60"     #   STR     R2, [R1] 
            "8850"     #   STR     R0, [R1,R2] 
                       #   done 
            "07BC"     #   POP     {R0-R2} 
            # "A02C0200" 
        ).decode('hex') 
        code += bcalc.bw(self.hookAddr + len(code), self.point + 4) 
        code += struct.pack("<L", self.dataAddr) 
 
        code = code.replace('\x00\xbf\x00\xbf', self.pointCode) 
        code = code.replace('\x00\xbf', self.assembleMov('R0', 
self.register)) 
        return code 
 
class RegisterPtr(RegisterHook): 
    Memcpy = 0x0080C41C + 1  
 
    def __init__(self, point, hookAddr, dataAddr, register, size): 
        RegisterHook.__init__(self, point, hookAddr, dataAddr, 
register) 
        self.size = size 
 
    def render(self): 
        code = ( 
            "00BF"       # NOP     ; smashed instruction 1 
            "00BF"       # NOP     ; smashed instruction 2 
            "0FB5"       # PUSH    {R0-R3,LR} 
            "4DF804CD"   # STR.W   R12, [SP,#-4]! ; a.k.a PUSH R12 
            "00BF"       # NOP     ; mov r1, srcreg 
            "0748"       # LDR     R0, dataAddress 
            "0268"       # LDR     R2, [R0] 
            "002A"       # CMP     R2, #0 
            "04D1"       # BNE     done 
            "064A"       # LDR     R2, dataSize 
            "0260"       # STR     R2, [R0] 
            "0430"       # ADDS    R0, #4 
            "064B"       # LDR     R3, =(memcpy+1) 
            "9847"       # BLX     R3 
                         # done 
            "5DF804CB"   # LDR.W   R12, [SP],#4 ; a.k.a POP R12 
            "BDE80F40"   # POP.W   {R0-R3,LR} 
            #"00BF00BF"  # NOP NOP ; jump back1 
            #"0000"      # NOP  ; align 
            #"41414141"  # dataAddress DCD 0x41414141 
            #"41414141"  # dataSize    DCD 0x41414141 
            #"1DC48000"  # memcpyaddr  DCD memcpy+1 
            ).decode('hex') 
     
        code += bcalc.bw(self.hookAddr + len(code), self.point + 4) 
        code += "0000".decode('hex') # ALIGN 
        code += struct.pack("<L", self.dataAddr) 
        code += struct.pack("<L", self.size) 
        code += struct.pack("<L", self.Memcpy) 
     



        code = code.replace('\x00\xbf\x00\xbf', self.pointCode) 
        code = code.replace('\x00\xbf', self.assembleMov('R1', 
self.register)) 
 
        print 'len(code)', len(code), code.encode('hex') 
        return code 
 
 
class Tracer: 
    HookAddr   = 0x4B6F4 # (4334-iphone5s-8.1) 
    DataAddr   = 0x4B72C                       
    RemapTable = 0x4B600                       
    FP_CTRL    = 0xE0002000  
    FP_REMAP   = 0xE0002004 
    FP_COMP0   = 0xE0002008 
 
    def __init__(self, point, register, size=None): 
        self.point = point 
        self.register = register 
        self.sizeOfData = 0x20 
        self.size = size 
 
    def fpbHook(self): 
        branchCode = bcalc.bw(self.point, self.HookAddr)  
        remaps = self.remaps = [] 
 
        if self.point % 4 == 0: 
            remaps.append( (self.point, branchCode) ) 
        elif self.point % 2 == 0: 
            addr1 = self.point - 2 
            addr2 = self.point + 2 
 
            inst1 = read(addr1, 4)[:2] + branchCode[:2] 
            inst2 = branchCode[2:] + read(addr2, 4)[2:] 
 
            remaps.append( (addr1, inst1) ) 
            remaps.append( (addr2, inst2) ) 
        else: 
            raise ValueError('Trace address must be half-word 
aligned') 
 
        # point remap register to the remap table 
        write(self.FP_REMAP, struct.pack("<L", self.RemapTable)) 
             
        # setup remap table with replacement instructions to be 
executed at point 
        self.remapTableBK = read(self.RemapTable, 4*len(remaps)) 
        for i, (addr, code) in enumerate(remaps): 
            print 'remapping', hex(addr), '->', code.encode('hex') 
            write(self.RemapTable + i*4, code) 
        
            # Setup FP_COMP Register pointing to the instruction to 
patch 
            compval = (addr & 0x1FFFFFFC) | 1# | 3 << 30 
            write(self.FP_COMP0 + i*4, struct.pack("<L", compval)) 
 
        # turn on fpb 
        write(self.FP_CTRL, '63020000'.decode('hex')) 
 



    def hook(self): 
        # Setup data region 
        self.dataBackup = read(self.DataAddr, self.sizeOfData) 
        write(self.DataAddr, '\x00' * self.sizeOfData) 
 
        # Setup code region  
        if self.register.startswith('['): 
            register = self.register.replace('[', '').replace(']', 
'') 
            h = RegisterPtr(self.point, self.HookAddr, 
self.DataAddr, register, self.size) 
        else: 
            h = RegisterMov(self.point, self.HookAddr, 
self.DataAddr, self.register) 
 
        hookCode = h.render() 
        self.hookBackup = read(self.HookAddr, len(hookCode)) 
        write(self.HookAddr, hookCode) 
 
        # Setup hook call 
        self.fpbHook() 
 
 
    def fpbUnhook(self): 
        write(self.FP_CTRL, '62020000'.decode('hex')) 
        for i, (_, _) in enumerate(self.remaps): 
            write(self.FP_COMP0 + i*4, '\x00' * 4) 
        write(self.FP_REMAP, '\x00' * 4) 
        write(self.RemapTable, self.remapTableBK) 
 
    def unhook(self): 
        # Restore hook call 
        # write(self.point, self.pointBackup) 
        self.fpbUnhook() 
        write(self.HookAddr, self.hookBackup) 
        write(self.DataAddr, self.dataBackup) 
 
    def traces(self): 
        size = read(self.DataAddr, 4) 
        size = struct.unpack("<L", size)[0] 
         
        if self.size: 
            ret = '' 
            if size > 0: 
                ret = read(self.DataAddr+4, size)  
                write(self.DataAddr, '\x00' * self.sizeOfData) 
  print " returning", ret 
 
            return ret 
 
        values = read(self.DataAddr+4, size) 
        values = struct.unpack("<" + "L" * (size/4), values) 
         
        write(self.DataAddr, '\x00' * self.sizeOfData) 
        return values 
         
class Printer: 
    def __init__(self, addr, register, size=None): 
        t = Tracer(addr, register, size) 



        t.hook() 
        sizeOfData = 32 
        DataAddr =  0x4B728 
        try: 
            while True: 
    print ' '.join(hex(x) for x in t.traces()) 
                time.sleep(1) 
        finally: 
            t.unhook() 
 
if __name__ == '__main__': 
   Printer(0x26CBA, 'R2') 
 
 
	
  
	
  


