
Introduction	

Abstract	

Broadcom wireless cards for mobiles devices, specifically the Broadcom line
BCM4325/29/30/34 are the most common wireless cards found in most
popular smartphones & tables (iPhone/iPad, Samsung, Nokia, Motorola and
HTC among others). Even with such an installed base and being a key client
component in any wireless network -at least any Wi-Fi network where mobile
devices participate- not much has been said about such cards. Previous
research, in this area includes approaches to modify the firmware to enable
monitor mode and raw 802.11 traffic injection in popular smartphones [1, 2]. In
those occasions most of the work was performed by static firmware reverse
engineering. In this paper, we will describe how to get a more dynamic
approach to analyze the behavior of the firmware execution on the network
card CPU.

Background	

Network card firmware analysis and attacks are not new. Several previous
works were published in this area: Debugger and Rootkits were developed [3]
cards were modified to pivot attacks to other peripherals through DMA or even
abuse the PCI BUS to create a P2P hardware attack [4] (i.e. attack a video
card by communicating directly from the network card), specific vulnerabilities
were discovered that provided remote attack vectors [5] among others. In this
paper, however, we will focus on 802.11 Wi-Fi network cards for mobile
devices and present a tool that will allow us to perform dynamic analysis of
the card firmware. Specifically, a limited tracer will be created. It is our hope
that, by making such tools available, further research will be conducted.

Objectives	

Our main objective is to provide a mechanism to inspect execution states of
the network card at different code points in a way that is, as much as possible,
independent of a specific model, version and mobile device operating system.
It is important to achieve this portability, because the daunting speed of
device development makes devices obsolete rather quickly. Additionally,
aggressive competition among mobile device vendors creates the need to
constantly introduce the latest 802.11 features thus new network card models
are constantly being introduced. Furthermore market share of mobile devices
can shift in short time frames, tying our approach to a specific vendor might
render it irrelevant in the near future.

Architecture	
 	

These types of network cards communicate with the host (mobile device) over
a SDIO bus. The card itself consist of a main CPU, generally ARM Cortext M3
or R4, a limited amount of volatile RAM memory to support the firmware
execution and persistent ROM storage. Additionally, the low level functionality
is grouped into several functional modules called cores. A number of cores

provide the low level functionality such as: PHY/MAC layers, chip specific
setup, d11 core that implements certain aspects of the 802.11 protocol. Cores
communicate over memory mapped registers and DMA with the network card
firmware. It is important to note that this DMA is internal to the network card
itself and as such the NiC device is not provided access to the host device
memory. This layout is illustrated by the following figure:

	

Figure	
 1:	
 Logic	
 diagram	
 of	
 the	
 cad	
 structure

The	
 firmware	
 	

The firmware for the card consists of two sections or regions containing both
data and code. A first region is loaded by the host (mobile) device into the
card volatile RAM, by a process called firmware upload; we will call this
"Region 1". The second region is non-writable and is part of an EPROM type
memory. The firmware code for Region 1 is protected by a simple CRC
checksum for integrity, modification of this region is simple and has been
previously demonstrated [1].

Communication	

As mentioned before, the mobile device OS (iOS/Android/Windows) wireless
driver communicate with the Wi-Fi card over an SDIO bus. This bus has
different capabilities like SPI-mode, but in this case there are no DMA
capabilities involved. However, a higher-level protocol is layered on top of this
bus, which enables communications by means of a set of IOCTLs commands.
It is important to differentiate these IOCTLs from those exposed on the user-
mode to kernel-mode boundary, to differentiate we will code the first
"Firmware defined IOCTL" and the later "user-to-kernel IOCTL". The following
figure illustrates the communication.

	

Figure	
 2:	
 IOCTL	
 messages	
 send	
 at	
 different	
 layers

Proposed	
 Solution	

In order to accomplish our objective of remaining as card neutral as possible,
we will modify the firmware implementation of the Firmware defined IOCTLs.
Our modification is going to introduce two new IOCTL commands that will
allow us to read and write memory respectively. Even though we will need to
perform this step individually and rather manually on each specific network
card version and model, once this read-and-write interface is provided we will
be able to work uniformly with different card models and versions across
different operating systems. In other words, this would be the only version
specific modification we propose; the rest of out implementation will be
portable.

Our first step will consist of identification of the firmware defined IOCTL
handler code on the firmware program, this is, find the code that processes
the received IOCTL command at the firmware. In order to accomplish this
task, we will first disassemble the firmware (see [1] for details of how to
proceed). We will rely on IDA Pro to accomplish this, once we have the
disassembled version Region 1 of the firmware program, the simplest way to
identify this portion of code is simply to search for all switch idioms within the
disassembly. The IOCTL handler typically resides in Region 1, and consists of
a switch with about 300 “cases”.

	

Figure	
 3:	
 Ida	
 pro	
 graph	
 of	
 the	
 large	
 number	
 of	
 cases	
 implemented	
 by	
 IOCTL	
 handler	
 switch

Once we have identified such code, we will then proceed to modify it in order
to add two new IOCTL functions: memory read and write operations. This can
be accomplished, for example, by placing our own code over one of the
firmware strings, then modifying the firmware code that handles the IOCTL to
implement a hook, this means to jump to our code that was placed over a
string. For example, for iOS 8.1.2 at iPhone 5s, we would modify the string
“smdebug=%08x,phydebug=%08x,psm_brc=%08x\nwepctl=%” (debug string
that is not normally being used by the firmware) so that it is overwritten with
the following code:

0004B6C4 read_write_impl
0004B6C4 CMP.W R1, #0xFA00 ;Read cmd code
0004B6C8 BEQ read_cmd
0004B6CA CMP.W R1, #0xFB00 ;Write cmd code
0004B6CE BEQ write_cmd
0004B6D0 MOV R7, R0
0004B6D2 MOV R6, R1
0004B6D4 BX LR
0004B6D6 ; ----------------------------------
0004B6D6
0004B6D6 read_cmd
0004B6D6 MOV R0, R2
0004B6D8 LDR R1, [R2]
0004B6DA LDR R2, [R2,#4]
0004B6DC B done
0004B6DE ; ----------------------------------
0004B6DE
0004B6DE write_cmd
0004B6DE LDR R0, [R2]
0004B6E0 ADDS.W R1, R2,#8
0004B6E4 LDR R2, [R2,#4]
0004B6E6
0004B6E6 done
0004B6E6 LDR R3, =(memcpy+1)
0004B6E8 BLX R3 ; memcpy
0004B6EA MOVS R0, #0
0004B6EC POP.W {R2-R8,PC}
0004B6EC ; END OF FUNCTION read_write_impl
0004B6EC ; ----------------------------------
0004B6F0 DCD memcpy+1

At this point the firmware now supports two new messages that read and write
to arbitrary memory locations. One way to get these new messages to be
executed would be to modify the host (mobile device) driver so that it sends
these new messages, however this would result in dependency on the
operating system, in other words, we would need to create patches for the
drivers of each of the mobile devices we want to support. In order to avoid this
dependency, we will rely on an existing user-to-kernel IOCTL that is already
implemented by Broadcom’s drivers within the Operating System kernel. This
particular IOCTL, will allow us to send custom messages from user-space,
these messages will be encapsulated over the SDIO bus protocol to finally be
handled by the firmware. Minor differences exits for each operating system,

but the differences are not complex to manage.

For the Apple case we will be using SIOCSA80211, and within the payload of
this IOCTL we will send the message APPLE80211_IOC_CARD_SPECIFIC.
For the Android case we will be using SIOCDEVPRIVATE. These
combinations will allows us to send "firmware defined IOCTL's" over user-to-
kernel IOCTL's. To clarify: we will be sending an IOCTL inside an IOCTL.
These messages will let us communicate with our firmware primitives read
and write. Once we have done this, we will continue by developing user space
code, we have chosen python as our language of choice, that will rely on
these read and write primitives in an OS independent and firmware version
independent manner.

We will then build read and write primitive wrappers in python. These
wrappers simply send the relevant user-to-kernel IOCTLs. At this point we can
move forward with the development of our tracing tool. The tracing tool will
provide hooking functionality in a similar manner to the implementation of the
read and write function. Whenever inspection of the value of a register or
memory location at a specific code address is desired, our tracer will hook this
address so that a jump to the handler code is injected. The handler will then
copy the value contained by the register or address of interest to the storage
area. The relevant portions of the tracer code look like this:

from rawio import read, write
import bcalc
import struct

class Tracer:
 HookAddr = 0x4B6F4 # (4334- iphone 5s- 8.1)
 DataAddr = 0x4B72C

 def __init__(self, point, register):
 self.point = point
 self.register = register
 self.sizeOfData = 0x10 # Size of our storage.

 def createHook(self, pointCode):
 code = (
 "00BF" # NOP ; placeholder for the
 "00BF" # NOP ; instructions smashed by jmp.
 "07B4" # PUSH {R0-R2}
 "00BF" # NOP ; placeholder for a mov.
 "0449" # LDR R1, =DataAddr
 "0A68" # LDR R2, [R1]
 "102A" # CMP R2, #0x10
 "02D0" # BEQ done
 "0432" # ADDS R2, #4
 "0A60" # STR R2, [R1]
 "8850" # STR R0, [R1,R2]
 # done
 "07BC" # POP {R0-R2}

 "7047" # BX LR
 "0000" # align
 # "A02C0200" ; DataAddr goes here.
).decode('hex')
 code += struct.pack("<L", self.DataAddr)

 code = code.replace('\x00\xbf\x00\xbf', pointCode)
 code = code.replace('\x00\xbf', self.assembleMov())
 return code

 def hook(self):
 # Setup data region
 self.dataBackup = read(self.DataAddr, self.sizeOfData)
 write(self.DataAddr, '\x00' * self.sizeOfData)

 # Setup code region
 self.pointBackup = read(self.point, 4)
 hookCode = self.createHook(self.pointBackup)
 self.hookBackup = read(self.HookAddr, len(hookCode))
 write(self.HookAddr, hookCode)

 # Setup hook call
 write(self.point, bcalc.bl(self.point, self.HookAddr))

Tracer constructor simply stores the address of the code on which we are
interested to inspect the state (point address) together with the register of
interest. Function CreateHook, will create the code that we will call from the
point of interest. This code gets rendered by: assembling a mov instruction is
to copy the contents of the register of interest to “R0”, replacing the first to
NOP instruction with the code that was originally at the point of interest
appending the storage area address were we will be storing the values.
Function hook creates a backup of the data stored at the addresses that we
will be using as storage and initializes the area with zeros, reads the
instructions that will be replaced by the call to our hook (pointBackup). The
rendered code is placed at the defined address and finally the code at the
point of interest is replaced by a branch-with-link (call) instruction.

This basic tracer is not without its limitations: 1. Since code at the trace point
will be relocated, instructions that are not position independent can’t be
traced. 2. Instructions that depend on the previous state of the CPU status
flags will not have the expected behavior. 3. Since branch-with-link instruction
was used (call) the link will be overwritten and wont have a meaningful value.
4. Since the instructions at the tracepoint are replaced, the tracer will only
work for addresses that we are able to write at.

We can address these limitations in different ways, we consider the most
relevant to be 4. As was mentioned before the entire code on Region 2 is not
writable this limits our tracer to Region 1. In order to provide a more dynamic
analysis of the code on Region 2, we need a way to address such limitation.

To accomplish our objective, we will rely on a feature present on the Cortex-

M3 (the micro processor used on most of the mentioned cards) called
FlashPatch breakpoint [6]. The FPB unit allows, by means of a remap table,
interception of the opcodes when the fetch operation of the fetch-decode-
execute cycle is being carried out. As described in the documentation, by
setting up a remap table, the comparator registers and enabling the FPB unit
by means of the FP_CTRL register we can create the intended effect of a
“flash patch”, this is modification of non-writable code.

Furthermore we consider the FPB feature of these CPUs to be of interest in
relation to the analysis of code integrity from a security perspective. The
configuration of this unit allow us to “modify” code that was considered read-
only, additionally since the FPB unit works by altering the fetch process and
since these CPUs Cortext M3 processors use different internal buses for data
and code reads (See Figure	
 4) a situation in which the executed code is
different from the code that can be read as data by the very CPU is achieved.
This situation allows for the possibility of a non-persistent rootkit: This rootkit
would work by modifying the execution of the firmware at certain addresses
and yet reading the firmware memory at those addresses will not reveal the
modification. A protection against such condition might rely on detecting the
remap table in memory, however it was discovered by experimenting with the
FPB that the remap table itself can be remapped. This results in correct
operation of the FPB feature while hiding the remap table. Ultimately, the
detection of this hiding technique can be accomplished by inspection of the
FP_CTRL register. The address of this control register cannot be remapped
since the comparator register does not allow for addresses that go as high as
the necessary addresses.

	

Figure	
 4:	
 Logical	
 diagram	
 of	
 the	
 Cortex	
 M3	
 and	
 its	
 components	
 [7]

Continuing with the tracer, we have now achieved tracing capabilities of the
code in both memory regions. Since the configuration of the FPB unit only
consist of memory mapped registers and we already had write primitives that
could be used for our purposes, we can implement this functionality by simply
writing to the adequate memory addresses that are required. We will use this
new development to study 802.11 handling code.

Finally, in order to inspect code of interest we need to point our tracer python
program to the address(es) that we are interested in evaluating, together with
the register we are interested to obtain. A full example of this can be found
under the appendix of this document.

References

[1] http://archive.hack.lu/2012/Hacklu-2012-one-firmware-Andres-Blanco-
Matias-Eissler.pdf
[2] http://bcmon.blogspot.nl/
[3] Guillaume Delugré. Closer to metal: reverse-engineering the broadcom
netextreme’s firmware. Hack.lu, 2010.
[4] Arrigo Triulzi. Project maux mk. ii, i own the nic, now i want a shell. The 8th
annual PacSec conference, 2008.
[5] Lo¨ıc Duflot, Yves-Alexis Perez, Guillaume Valadon, and Olivier Levillain.
Can you still trust your network card? CanSecWest Applied Security
Conference, 2010.
[6] http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cort
ex_m3_r1p1_trm.pdf
[7] The definite guide to the ARM Cortex-M3, Joseph Yiu.

IOCTL.PY	

#!/usr/bin/env python

import ctypes
import socket
import struct
import subprocess

Apple ioctl codes # 32bit
SIOCGA80211 = 0xC02069C9
SIOCSA80211 = 0x802069C8

broadcom wl_ioctl codes
WLC_MAGIC = 0
WLC_GET_VERSION = 1
WLC_GET_CHANNEL = 29
WLC_SET_CHANNEL = 30
WLC_GET_RADIO = 37
WLC_SET_RADIO = 38
WLC_GET_VAR = 262
WLC_SET_VAR = 263

class apple80211req(ctypes.Structure):
 fields = [("ifname", ctypes.c_char * 16),
 ("req_type", ctypes.c_int),
 ("req_val", ctypes.c_int),
 ("req_len", ctypes.c_uint),
 ("req_data", ctypes.c_void_p)]

def wl_ioctl(cmd, buff=''):
 req = apple80211req()
 req.ifname = "en0\0"
 req.req_type = APPLE80211_IOC_CARD_SPECIFIC
 req.req_val = cmd

 if len(buff) != 0:
 buff = ctypes.create_string_buffer(buff)
 req.req_data = ctypes.cast(buff, ctypes.c_void_p)
 req.req_len = len(buff) - 1
 else:
 buff = ctypes.create_string_buffer(4)
 req.req_data = ctypes.cast(buff, ctypes.c_void_p)
 req.req_len = 4

 libSystem =
ctypes.cdll.LoadLibrary("/usr/lib/libSystem.B.dylib")
 s = socket.socket()
 if libSystem.ioctl(s.fileno(), SIOCSA80211, ctypes.byref(req))
!= 0:
 libSystem.__error.restype = ctypes.POINTER(ctypes.c_int)
 libSystem.strerror.restype = ctypes.c_char_p
 errno = libSystem.__error().contents.value
 raise Exception("ioctl error: %s" %
libSystem.strerror(errno))

 s.close()
 return ''.join(x for x in buff)

def test_ioctl():
 magic = wl_ioctl(WLC_MAGIC)
 return (struct.unpack("<L", magic)[0] == 0x14e46c77 and
 struct.unpack("<L", wl_ioctl(WLC_GET_VERSION))[0] == 1)

def get_channel():
 """ returns (current, target, scan) channels """
 chan = wl_ioctl(WLC_GET_CHANNEL, '\x00' * 12)
 return struct.unpack("<LLL",chan[:-1])

def set_channel(number):
 wl_ioctl(WLC_SET_CHANNEL, struct.pack("<L", number))

def get_radio():
 return struct.unpack("<L", wl_ioctl(WLC_GET_RADIO))[0]

def set_radio(status):
 mask = 7
 status = struct.pack("<l", (mask << 16) | status)
 wl_ioctl(WLC_SET_RADIO, status)

def get_intvar(var):
 return struct.unpack("<L", wl_ioctl(WLC_GET_VAR, var +
'\0')[:4])[0]

def set_intvar(var, val):
 wl_ioctl(WLC_SET_VAR, var + '\0' + struct.pack("<L", val))

if __name__ == "__main__":
 if not test_ioctl():
 raise Exception("test failed")
 else:
 print 'test ok'
	

	

RAWIO.PY	

import ioctl
import struct

def read(addr, length):
 buf = struct.pack("<LL", addr, length)
 buf += "\x00" * (length - len(buf))
 return ioctl.wl_ioctl(0xfa00, buf)[:length]

def write(addr, data):
 buf = struct.pack("<LL", addr, len(data))
 buf += data
 ioctl.wl_ioctl(0xfb00, buf)

if __name__ == "__main__":
 print read(0x4B6AB, 8)

FPBTRACE.PY	

from rawio import read, write

import bcalc
import struct
import time

class Hook:
 def __init__(self, point, hookAddr, dataAddr):
 self.point = point
 self.pointCode = read(point, 4)
 self.hookAddr = hookAddr
 self.dataAddr = dataAddr

 def registerNumber(self, register):
 regNum = register[1:]

 try:
 ret = int(regNum)
 except ValueError, e:
 if register.upper() == 'SP':
 ret = 13
 elif register.upper() == 'LR':
 ret = 14
 else:
 raise ValueError('Unknown Register:' + register)

 return ret

 def assembleMov(self, dst, src):
 mov = '\x00\xbf' # nop
 srcReg = self.registerNumber(src)
 dstReg = self.registerNumber(dst)

 if srcReg >= 0 and srcReg <= 7:
 mov = chr((srcReg << 3) | dstReg) + '\x00' # 08 00 ->
movs r0, r1; 10 00 -> movs r0, r2 ... etc
 elif srcReg > 7 and srcReg <= 14:
 srcReg -= 8
 mov = chr(0x40 | (srcReg << 3) | dstReg) + '\x46' # 40
46 -> mov r0, r8; 48 46 -> mov r0, r9 ... etc
 else:
 raise ValueError('Invalid register number:' +
self.register)

 return mov

 def render(self):
 raise NotImplementedError()

class RegisterHook(Hook):
 def __init__(self, point, hookAddr, dataAddr, register):
 Hook.__init__(self, point, hookAddr, dataAddr)
 self.register = register

class RegisterMov(RegisterHook):
 def render(self):
 code = (
 "00BF" # NOP
 "00BF" # NOP
 "07B4" # PUSH {R0-R2}
 "00BF" # NOP

 "0449" # LDR R1, =sub_22CA0
 "0A68" # LDR R2, [R1]
 "102A" # CMP R2, #0x10
 "02D0" # BEQ done
 "0432" # ADDS R2, #4
 "0A60" # STR R2, [R1]
 "8850" # STR R0, [R1,R2]
 # done
 "07BC" # POP {R0-R2}
 # "A02C0200"
).decode('hex')
 code += bcalc.bw(self.hookAddr + len(code), self.point + 4)
 code += struct.pack("<L", self.dataAddr)

 code = code.replace('\x00\xbf\x00\xbf', self.pointCode)
 code = code.replace('\x00\xbf', self.assembleMov('R0',
self.register))
 return code

class RegisterPtr(RegisterHook):
 Memcpy = 0x0080C41C + 1

 def __init__(self, point, hookAddr, dataAddr, register, size):
 RegisterHook.__init__(self, point, hookAddr, dataAddr,
register)
 self.size = size

 def render(self):
 code = (
 "00BF" # NOP ; smashed instruction 1
 "00BF" # NOP ; smashed instruction 2
 "0FB5" # PUSH {R0-R3,LR}
 "4DF804CD" # STR.W R12, [SP,#-4]! ; a.k.a PUSH R12
 "00BF" # NOP ; mov r1, srcreg
 "0748" # LDR R0, dataAddress
 "0268" # LDR R2, [R0]
 "002A" # CMP R2, #0
 "04D1" # BNE done
 "064A" # LDR R2, dataSize
 "0260" # STR R2, [R0]
 "0430" # ADDS R0, #4
 "064B" # LDR R3, =(memcpy+1)
 "9847" # BLX R3
 # done
 "5DF804CB" # LDR.W R12, [SP],#4 ; a.k.a POP R12
 "BDE80F40" # POP.W {R0-R3,LR}
 #"00BF00BF" # NOP NOP ; jump back1
 #"0000" # NOP ; align
 #"41414141" # dataAddress DCD 0x41414141
 #"41414141" # dataSize DCD 0x41414141
 #"1DC48000" # memcpyaddr DCD memcpy+1
).decode('hex')

 code += bcalc.bw(self.hookAddr + len(code), self.point + 4)
 code += "0000".decode('hex') # ALIGN
 code += struct.pack("<L", self.dataAddr)
 code += struct.pack("<L", self.size)
 code += struct.pack("<L", self.Memcpy)

 code = code.replace('\x00\xbf\x00\xbf', self.pointCode)
 code = code.replace('\x00\xbf', self.assembleMov('R1',
self.register))

 print 'len(code)', len(code), code.encode('hex')
 return code

class Tracer:
 HookAddr = 0x4B6F4 # (4334-iphone5s-8.1)
 DataAddr = 0x4B72C
 RemapTable = 0x4B600
 FP_CTRL = 0xE0002000
 FP_REMAP = 0xE0002004
 FP_COMP0 = 0xE0002008

 def __init__(self, point, register, size=None):
 self.point = point
 self.register = register
 self.sizeOfData = 0x20
 self.size = size

 def fpbHook(self):
 branchCode = bcalc.bw(self.point, self.HookAddr)
 remaps = self.remaps = []

 if self.point % 4 == 0:
 remaps.append((self.point, branchCode))
 elif self.point % 2 == 0:
 addr1 = self.point - 2
 addr2 = self.point + 2

 inst1 = read(addr1, 4)[:2] + branchCode[:2]
 inst2 = branchCode[2:] + read(addr2, 4)[2:]

 remaps.append((addr1, inst1))
 remaps.append((addr2, inst2))
 else:
 raise ValueError('Trace address must be half-word
aligned')

 # point remap register to the remap table
 write(self.FP_REMAP, struct.pack("<L", self.RemapTable))

 # setup remap table with replacement instructions to be
executed at point
 self.remapTableBK = read(self.RemapTable, 4*len(remaps))
 for i, (addr, code) in enumerate(remaps):
 print 'remapping', hex(addr), '->', code.encode('hex')
 write(self.RemapTable + i*4, code)

 # Setup FP_COMP Register pointing to the instruction to
patch
 compval = (addr & 0x1FFFFFFC) | 1# | 3 << 30
 write(self.FP_COMP0 + i*4, struct.pack("<L", compval))

 # turn on fpb
 write(self.FP_CTRL, '63020000'.decode('hex'))

 def hook(self):
 # Setup data region
 self.dataBackup = read(self.DataAddr, self.sizeOfData)
 write(self.DataAddr, '\x00' * self.sizeOfData)

 # Setup code region
 if self.register.startswith('['):
 register = self.register.replace('[', '').replace(']',
'')
 h = RegisterPtr(self.point, self.HookAddr,
self.DataAddr, register, self.size)
 else:
 h = RegisterMov(self.point, self.HookAddr,
self.DataAddr, self.register)

 hookCode = h.render()
 self.hookBackup = read(self.HookAddr, len(hookCode))
 write(self.HookAddr, hookCode)

 # Setup hook call
 self.fpbHook()

 def fpbUnhook(self):
 write(self.FP_CTRL, '62020000'.decode('hex'))
 for i, (_, _) in enumerate(self.remaps):
 write(self.FP_COMP0 + i*4, '\x00' * 4)
 write(self.FP_REMAP, '\x00' * 4)
 write(self.RemapTable, self.remapTableBK)

 def unhook(self):
 # Restore hook call
 # write(self.point, self.pointBackup)
 self.fpbUnhook()
 write(self.HookAddr, self.hookBackup)
 write(self.DataAddr, self.dataBackup)

 def traces(self):
 size = read(self.DataAddr, 4)
 size = struct.unpack("<L", size)[0]

 if self.size:
 ret = ''
 if size > 0:
 ret = read(self.DataAddr+4, size)
 write(self.DataAddr, '\x00' * self.sizeOfData)
 print " returning", ret

 return ret

 values = read(self.DataAddr+4, size)
 values = struct.unpack("<" + "L" * (size/4), values)

 write(self.DataAddr, '\x00' * self.sizeOfData)
 return values

class Printer:
 def __init__(self, addr, register, size=None):
 t = Tracer(addr, register, size)

 t.hook()
 sizeOfData = 32
 DataAddr = 0x4B728
 try:
 while True:
 print ' '.join(hex(x) for x in t.traces())
 time.sleep(1)
 finally:
 t.unhook()

if __name__ == '__main__':
 Printer(0x26CBA, 'R2')

	

	

