ﬂﬂﬁ INS
pection ol b ‘

| f:; (“
Cd |
“—ﬁf r" fﬁ rrJJJJa

Agenda

e Qverview of Broadcom Wi-Fi NiC mobile devices
— Architecture
— Attack surface & possibilities

* Tool:
— Dynamic inspection.
— Why not just make a debugger?
— Our objective
— Explore findings along the way.

* Usage of the tool to inspect firmware

Previous works

* Much has been done on network card
firmware. See Triulzi[1], Delugré[2], others [3]

* Mobile devices

— Firmware modified for monitor mode and raw
injection on iOS & Android by two different teams
(Andres Blanco, bcmon team)

— Vulnerabilities discovered: CVE-2012-2619
— Not much (public) research after that.

Broadcom huge WI-FI player

e | B A BROADCOM.

= = ﬂj

£ Menu of

[0 V]

Contacts_Messaging_ Maps

What do the cards look like?

HL Qe

- 050-KAOON0OABY
£ 010 SNASKYS

Jil] e
|2

[LRIIIEERIRELRIRIEy

wwovn® N

SEOUANS
COMMUNICATIONS

P1X011.00
1007

-l
® 00090

IR -
LT T

What’s inside?

CPU, memory and cores

4 "\

I

®

.

v

Attack surface & possibilities

 802.11 implementation bug -> RCE Firmware
— Pivot Firmware -> Driver
— Man-in-the-middle to inject browser/app exploits
— At least pivot to a target LAN:

Even more surface

* Firmware supports wide range of features:
— TCP
— ICMP & ARP offloading
— Firewall implementation
— Mobile hotspot, Wi-Fi Direct, AirDrop
— Proprietary 802.11 extensions (Broadcom/Cisco)

* We need to play more with these firmwares!

Mobile products timeline

600 Beat DJ
900 Omnia 3910 Omnia HD
released
July, 2008

Sunburst Mesmerize Galaxy S 4G T959V Galaxy S|l
AG9Y oe ' T989
released

iPhone 3G iPhone 3GS iPhone 4 iPhone 45
released released released released

July 11, 2008 June19, 2 June 24

Mobile products timeline

Know our past. Create the future...
1982 .1984 _1985 1986 _ 1987 _1988 1989 —1991 1992 __1993 __ 1994

Q

[

-'g@v_;y m;l
H “"I‘ D (= 2 % _iﬁ .‘,,
\ @9 GDM:E “

Very soon you end up buried

f devices

IN a Séa O

Objectives

* Dynamically inspect firmware
* Be as OS/Device independent as
possible

|

BROADCOM.
N\

Why dynamic?

e Static inspection only gets you that far.

* Once you have all memory dumped,
understanding everything from a static
perspective is limited. E.g. indirect calls.

* |f you manage to get a crash it is hard to
understand what happened.

Firmware is Separated in two regions

Loaded from filesystem: _
Only protected by CRC Burned into ROM:

Jetc/wifi/firmware Not initially accesible to us

Jusr/share/firmware/wifi

Communication

Communication

A
| |

A
| |
IOCTL message over SDIO.
/’

IOCTL Syscall /

/
U
U
/

/" Apple: 10C_CARD_SPECIFIC

/
/

‘ Android: SIOCDEVPRIVATE

Proposed solution

* |f we modify the firmware to support to new
IOCTL msgs: Read & Write.

* Send a user -> kernel IOCTL, that encapsulates
a Kernel -> firmware IOCTL

* If we can do this, then we can even write
python code, from userspace, that will read
and write memory from the firmware!

ldentifying IOCTL Handler

Search for switch with lots of cases.
Or search for WLC_MAGIC IOCTL=0x14e46c77

Sometimes the handler is on Region 2... BUT if
we have an earlier or different firmware we
can find the caller.

If all else fails, follow interrupt handler path

g~ m!' "»
= — = = 3ttt ar 7 ey
w_ pnjy i_r- o aii fla i “T'..—;" -'._"'___ =M=
= —-i-l-'-—;—r-—---m..-_—-:mmi.l.‘n‘il-lll_l llllll |“||"||l.
r it - 1 s T e SN II-..
B =---m- |_mm RPNk

Typical hooking

Original Code Point of interest Our code

F5 7A 4F CHP .U R1, #
DO BEQ read
F5 7B 4F CHP .U R1, #
DO BEQ write
46 MOU R7, RO
46 MOV R6, R1
47 BX LR

RO, R2

R1, [R2]
R2, [R2,#4]
done

b J

write
68 LDR RO, [R2]
F1 ADDS.W R1, R2, #8
68 LDR R2, [R2,#4]

done
4B LDR R3, =(memcpy+1)
47 BLX R3 ; memcpy
20 MOUS RO, #0
E8 FC 81 POP.W {R2-R8,PC}

R&W Little Demo

R&W Little Demo

Read & Write. Now what?

Dump Region 2.

At this point we can read & write to memory
mapped registers

All sort of counters, stats, even packets.

Most importantly we can modify the code.

— And we can do that without having to create new
firmwares each time!

Handler code

def createHook(self, pointCode):

code = (
"OOBF" # NOP ;placeholder to place the instructions smashed by the jmp
"OOBF" # NOP ;thatthe tracer injected.
"07B4" # PUSH {RO-R2}
"OOBF" # NOP ;placeholder to place a mov instruction with the desired register.
"0449" # LDR R1,=sub_22CA0
"0A68" # LDR R2,[R1]
"102A" # CMP R2, #0x10
"02D0" # BEQ done
"0432" # ADDS R2,#4
"0AG0" # STR R2,[R1]
"8850" # STR RO, [R1,R2]
done
"07BC" # POP {RO-R2}
"7047" # BX LR
"0oo0" # align
"A02C0200"

).decode('hex')
code += struct.pack("<L", self.DataAddr)

code = code.replace("\x00\xbf\x00\xbf', pointCode)
code = code.replace("\x00\xbf', self.assembleMov())
return code

First Tracer

* Given an address and a register:
— Create hook & hook handler code.
— Clear a storage area
— The read from storage
— Usage as simple as:

t = Tracer(0Ox026CB4, 'R3')
t.hook()
try:
while True:
print t.traces()
time.sleep(1)
except:
t.unhook()

What about region 27?

What about region 27?

* Enter flash patch
— Set up a remap table
— Comparators
— Enable FPB through a control register.

* Basically, it is like we are setting up the MMU
to modify instructions on fetch.

Flash patch operation diagram

0x20000000

Remap

operations New literal #1
] SRAM

region
New Inst #3
New Inst #2
New Inst #1 REMAP base address

0x20000000

Literal #1

CODE
Inst #2 region

cowpo

Inst #3 +«—— COMP2
0x00000000

Tracer again

e Setup Hook handler as before and then:
— Write remap table in memory
— Setup comparators
— Enable FPB
— Houston: we have tracepoints (kindda).

Wait a minute!

* Basically, it is like we are setting up the MMU
to modify instructions on fetch.

How does it work?

. Trace
/ oulpul
!

Instruction bus Data bus

Connaction o AHB masters

AHB intarconnect
(Internal BusMalrix)

™ s ey 257 e i A - vae ”

'.,-_-r' _l»_ullu 1 to .u_.lii_x slavas ae Internal private

= B paripheral bus
(AHB)

AHE 1o
APB
brigge
Instruction bus Data bus System Private pariphera
(I.Code) (D.Code) bus bus (PFPB)

Internal private
peripharal bus
APB)

Non-persistent rootkit?

* Scenario:
— Compromised device.
— Modifies Region 1 file on disk.
— Loads into the card.
— Restores Region 1 file.

— Exfiltrate traffic or pivot through another network,
side-channel, etc.

Want even more stealth?

 Make it so that even if someone can read the
firmware live from the card memory. It cant!

e Setup remap table so that malicious code is
hidden.

 What about the remap table? No problem!
Remapping the remap table works!

100% Stealth?

e Answer is no:
— Can’t remap control or comparator registers.

— Have a limited number of comparator and remap
entries.

— If remap control register is disabled the whole
deception falls.

e Still more work to discover hidden code.

Back to our tool

e Brief 802.11 review:

— 3 Types of frames:
* Data
* Management
e Control

— Mgmt frames contain Information Elements

Octets; ¢— 1 —P>¢— { —P4¢—— |ength ——»

Figure 7-37—Element format

Usual association process
WEREEEnENRICIUES

|IEEE 802.11 Probe Request

IEEE 802.11 Probe Response (Security Parameters)

|EEE 802.11 Open System Authentication Request

IEEE 802.11 Open System Authentication Response

IEEE B802.11 Association Request (Securnty Parameters)

sociation Response

Association response

P IEEE 802.11 Association Response, Flags:
A4
P Fixed parameters (6 bytes)
v Tagged parameters (151 bytes)
P Tag: Supported Rates 1(B), 2(B), 5.5(B), 11(B), 9, 18, 36, 54, [Mbit/sec]
¥ Tag: Vendor Specific: Microsof: WMM/WME: Parameter Element
Tag Number: Vendor Specific (221)
Tag length: 24
OUI: 00-50-f2 (Microsof)
Vendor Specific OUI Type: 2
Type: WMM/WME (0x02)
WME Subtype: Parameter Element (1)
WME Version: 1
P WME QoS Info: 0x00

Reserved: 00
Parameters ACI 0 (Best Effort), ACM no , AIFSN 3, ECWmin 4 ,ECWmax 10, TXOP O

Parameters ACI 1 (Background), ACM no , AIFSN 7, ECWmin 4 ,ECWmax 10, TXOP ©
Parameters ACI 2 (Video), ACM no , AIFSN 2, ECWmin 3 ,ECWmax 4, TXOP 94
Parameters ACI 3 (Voice), ACM no , AIFSN 2, ECWmin 2 ,ECWmax 3, TXOP 47

00026C92E
00026CA2
00026CA4
00826CA8
00826CAA
80826CAE
00626CBO

Code processing
association response

F8 18 33
68
F8 7C C5
93
FO 48 02
9B
60

H80826CB2 5A 78

00026CBY4
00826CB8
00826CBA
80826CBE
806826CC2
80826CC6
80826CCA
000626CCC

LDR.W
LDR
LDR.W
STR
ORR.W
LDR
STR
LDRB
ADD . W
ADDS
STR.W
BL.W
LDR.W
LDRSB . W
CHP
BGE

R3, [R5,#

R2, [R6,#4]

R12, [R5,#]

R3, [SP,#0x58+var_ 40]
R2, R2, #0x49

R3, [SP,#0x58+var_ 30]

R2 R3, #1

RO, R12, HOxE

R1, R3, #2

R12, [SP,#0x58+var_38]
memcpy

R12, [SP,#0x58+var 38]
R2, [R12,#06x14]

R2, #6

loc_26CDE

Hook trace demo

THANKS!

