llu-sory

Impersonate, Tamper, and Exploit

Alfonso De Gregorio

Founder, BeeWise SeCYoure

HITBSecConf 2015, Amsterdam, May 26th-29th, 2015

Web PKIl is Fragile

Web PKl is Fragile SecYO Ure 1/103
xS

/me @secYOUre

#illusoryTLS
#HITB2015AMS

secYOUre 6/103

UNFORGETTABLE

Web PKl is Fragile 7/103

If only we could notice them

Web PKl is Fragile SecYO Ure 8/103
|

Web PKIl is Fragile

o 11
Ed b

Web PKl is Fragile

PKI Dramas

China Internet Network Information Center (CNNIC), 2015
Lenovo, 2015

National Informatics Centre of India, 2014

ANSSI, 2013

Trustwave, 2012

Tilrktrust, 2011-2013

DigiNotar, 2011

Comodo, 2011

Verisign, 2010

Web PKl is Fragile SecYOUre 10/103
L

Unsuspecting Users

Remaining oblivious

Web PKl is Fragile 12/103

Silent Failure

()
9

HELLO? CAN ANYBODY HEAR ME?

Web PKI is Fragile 13/103

[me

At the intersection of software security and security software,
exploring, and trying to contain, the space of unanticipated state.

Web PKl is Fragile SecYO Ure 15/103
I

Secure Backdoor

Almost safe

Web PKl is Fragile SecYO Ure 16/103
I

1. Web PKl is Fragile

The sorrow state of the infrastructure we daily entrust our business upon

2. illusoryTLS
Nobody But Us Impersonate, Tamper, and Exploit
3. The Impact

Or, why one rotten apple spoils the whole barrel

4. A Backdoor Embedding Algorithm

Elligator turned to evil

5. Conclusions
The misery of our times

Web PKl is Fragile SecYO Ure 17/103
I

= Timely topic often debated as matter for a government to legislate on

Web PKl is Fragile SecYO Ure 18/103
|

= Timely topic often debated as matter for a government to legislate on

= Aspace that some entities might have practically explored regardless of the
policy framework

Web PKl is Fragile SecYO Ure 18/103
|

= Timely topic often debated as matter for a government to legislate on

= Aspace that some entities might have practically explored regardless of the
policy framework

= Would we be able to notice if our communications were being exploited?

Web PKl is Fragile SecYOUre 18/103
|

Web PKl is Fragile SecYOUre 19/103
I

How many of you think that
backdoors can be asymmetric?

Web PKl is Fragile SecYO Ure 20/103
|

How many of you think that
backdoors can be planted in data?

secYOUre 21/103

Common View

= Backdoors are symmetric

= Malicious logic in the target system code base

= Everyone with knowledge about the internals of the backdoor can exploit it
= Given enough skills and effort, code review can spot their presence

Web PKl is Fragile SecYOUre 22/103
I

= Backdoors can be asymmetric.
Their complete code does not enable anyone, except those with access to
the key-recovery system, to exploit the backdoor

Web PKl is Fragile se CYO Ur e 23/103
I

= Backdoors can be asymmetric.
Their complete code does not enable anyone, except those with access to

the key-recovery system, to exploit the backdoor
= Backdoors can be planted in data

Web PKl is Fragile SeCYOUI'e

23/103

Backdoor is data, data is backdoor

Web PKl is Fragile SecYO Ure 24/103
N

= The entire X.509 Web PKI security architecture falls apart, if a
single CA certificate with a secretly embedded backdoor enters
the certificate store of relying parties

Web PKl is Fragile se CYO Ur e 25/103
I

Web PKl is Fragile

The entire X.509 Web PKI security architecture falls apart, if a
single CA certificate with a secretly embedded backdoor enters

the certificate store of relying parties

Have we sufficient assurance that this did not happen already?

secYOUre 25/103

illusoryTLS

illusoryTLS SecYO Ure 26/103
T

Underhanded Crypto Contest

illusoryTLS SecYOUre 27/103
'

‘ ‘ The Underhanded Crypto Contest
is a competition to write or modify
crypto code that appears to be
secure, but actually does

something evil),

illusoryTLS

= Aninstance of the Young and Yung elliptic curve asymmetric backdoor in
RSA key generation

illusoryTLS SecYO Ure 28/103
N

Security Outcome

The backdoor completely perverts the security guarantees provided by the TLS
protocol, allowing the attacker to:

= Impersonate the endpoints (i.e., authentication failure)

illusoryTLS SecYOUre 29/103
C TS

Security Outcome

The backdoor completely perverts the security guarantees provided by the TLS
protocol, allowing the attacker to:

= Impersonate the endpoints (i.e., authentication failure)
= Tamper with their messages (i.e., integrity erosion)

illusoryTLS S€CYOUI'€ 29/103
C TS

Security Outcome

The backdoor completely perverts the security guarantees provided by the TLS
protocol, allowing the attacker to:

= Impersonate the endpoints (i.e., authentication failure)
= Tamper with their messages (i.e., integrity erosion)
= Actively eavesdrop their communications (i.e., confidentiality loss)

illusoryTLS S€CYOUI'€ 29/103
C TS

Threat Model

The backdoor designer can:

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

illusoryTLS SecYO Ure 30/103
T

Threat Model

The backdoor designer can:

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

= “influence policies, standard and specifications for commercial public key
technologies.”

illusoryTLS SecYOUre 30/103
T

Threat Model

The backdoor designer can:

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

= “influence policies, standard and specifications for commercial public key
technologies.”

= Interfere with the supply-chain

illusoryTLS S€CYOUI'€ 30/103
T

Threat Model

The backdoor designer can:

illusoryTLS

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

= “influence policies, standard and specifications for commercial public key
technologies.”

= Interfere with the supply-chain
= Disregard everything about policy

secYOUre 30/103

Threat Model

The backdoor designer can:

illusoryTLS

“Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

“influence policies, standard and specifications for commercial public key
technologies.”

Interfere with the supply-chain
Disregard everything about policy

Or, she is simply in the position to build the security module used by the
Certification Authority for generating the key material

secYOUre 30/103

Three Modules

tj:: D &i
=D C= &=
Cert . Cert

Client Server
Store Store

illusoryTLS SecYO Ure 31/103
I

network-simple-tls

o T repoary Explore Gist Blog Help secvoure ++ @ & B
k0001 / network-simple-tls @Unwatch~ 4 Star 3 YFork 3
Haskell library for simple network sockets usage patterns using TLS security.
<> Code
119 commits 1 branc s 2
© tssues 3
P branch: master~ network-simple-tls / + 0 s
11 Pull requests
network-simple-ts-0.2.1
on Mar s, 2014 Latest comnit de3290133
™ examples Updated examples and removed the from cabal 2yearsa0 4 puce
B srcNetworSimpleTCP socketBackend: ensurs the number of received bytes ayearago
s Graphs
B gtignore gtignore 2 years ago
B travisymi travis ymi 2yearsago wrTps done UR
B License Inia 2yearsago || MEEps://oichub.conkoo
You can done wih HTTPS, SSH,
B PeoPLE PEOPLE: Nickolay Kudasov 2yearsago u e
B READMEmd README.md: Add TravisCi build icon 2 years ago Ty
B setuphs Inta 2 years ago
B changelog.md network-simple-t-0.2.1 ayearago
B network-simple-ts cabal network-simple-t-0.2.1 ayearago
&2 README.md
netwark-simnle-tis -

illusoryTLS SecYO Ure 32/103
I

Echo service over TLS

= Ui

= &=
Cert . Cert

Store Client Internet Server Store

illusoryTLS S€CYOUI'€ 33/103
I

Where is the backdoor?

If the client and server codeiis
contributed by an open-source project

and it is used as-is, where is the
backdoor?

illusoryTLS SecYO Ure 34/103
|

Where is the backdoor?

a5
Cert . Cert
Store Client Internet Server Store

illusoryTLS S€CYOUI'€ 35/103
N

A Covert Channel

= The upper order bits of the RSA modulus encode the asymmetric
encryption of a seed generated at random

illusoryTLS SecYO Ure 36/103
T

A Covert Channel

= The upper order bits of the RSA modulus encode the asymmetric
encryption of a seed generated at random

= The same seed was used to generate one of the RSA primes of the CA
public-key modulus

illusoryTLS SecYO Ure 36/103
T

A Covert Channel

= The upper order bits of the RSA modulus encode the asymmetric
encryption of a seed generated at random

= The same seed was used to generate one of the RSA primes of the CA
public-key modulus

= The RSA modulusis at the same time a RSA public-key and an ciphertext
that gives to the backdoor designer the ability to factor with ease the
modulus

illusoryTLS S€CYOUI'€ 36/103
T

Where the backdoor is not

No backdoor was slipped into the
cryptographic credentials issued to
the communicating endpoints

secYOUre 37/103

SETUP Attacks

= Notion introduced by Adam Young
and Moti Yung at Crypto '96

= Young and Yung elliptic-curve
asymmetric backdoor in RSA key
generation

= Expands on ‘A Space Efficient
Backdoorin RSA and its
Applications’, Selected Areas in
Cryptography ’05

= Aworking implementation at

http://cryptovirology.com

illusoryTLS SeCYOUI'e 38/103
D

http://cryptovirology.com

They're young
They're in love.
A They're on the run.

= The exploitation requires access to
resources not embedded in the
backdoor itself

= e.g., elliptic-curve private key

= The vulnerability can be exploited

by the backdoor designer and by

whoever gains access to the
associated key-recovery system

1l

KRISTIN HALBROOK

5

illusoryTLS S€CYOUI'€ 39/103
N

How many of you believe that it is
possible to forbid an enemy
intelligence organization from gaining
access to a private key?

secYOUre 40/103

Indistinguishability

Assuming ECDDH holds

The backdoor key pairs appear to
all probabilistic polynomial time
algorithms like genuine RSA key
pairs

= Black-box access to the
key-generator does not allow
detection

© Graham eorge f Barcroft Media

illusoryTLS SecYOUre 41/103
I

Forward Secrecy

= If areverse-engineer breaches the
key-generator, then the previously
stolen information remains
confidential

illusoryTLS SecYOUre 42/103
I

“ = The backdoor can be used multiple
' ‘ times and against multiple targets

)L 4

illusoryTLS S€CYOUI'€ 43/103
|

44/103
Impact secYOUre
S

A Subtle Attack

= Break TLS security guarantees at will

Impact SecYOUre 45/103
e,

A Subtle Attack

= Break TLS security guarantees at will
= Impersonation (e.g., authentication
failure)

Impact SecYOUre 45/103
e,

A Subtle Attack

= Break TLS security guarantees at will
= Impersonation (e.g., authentication
failure)

= Message tampering (e.g., integrity erosion)

Impact SecYOUre 45/103
e,

A Subtle Attack

Break TLS security guarantees at will

Impersonation (e.g., authentication
failure)

Message tampering (e.g., integrity erosion)

Active eavesdropping of encrypted
communications (e.g., confidentiality loss)

Impact SecYOUre 45/103
e,

A Subtle Attack

Break TLS security guarantees at will

Impersonation (e.g., authentication
failure)

Message tampering (e.g., integrity erosion)

Active eavesdropping of encrypted
communications (e.g., confidentiality loss)

«" No need to have access to any private key
used by system actors

Impact SecYOUre 45/103
e,

A Subtle Attack

Break TLS security guarantees at will

Impersonation (e.g., authentication
failure)

Message tampering (e.g., integrity erosion)

Active eavesdropping of encrypted
communications (e.g., confidentiality loss)

« No need to have access to any private key
used by system actors

«" No need to tamper with the
communicating endpoints

Impact SecYOUre 45/103
e,

A Subtle Attack

Break TLS security guarantees at will

Impersonation (e.g., authentication
failure)

Message tampering (e.g., integrity erosion)

Active eavesdropping of encrypted
communications (e.g., confidentiality loss)

« No need to have access to any private key
used by system actors

= No need to tamper with the
communicating endpoints

«" Need to retain control over the
key-generation of the target RSA modulus

Impact SecYOUre 45/103
e,

Is the malicious implementer a threat
mitigated by IT product security
certifications?

secYOUre 46/103

Fictional Security

Asingle CA certificate with a secretly embedded backdoor renders the entire TLS security fictional

Impact 47/103

One Rotten Apple...

... spoils the whole barrel

sp0|ls the whole ba rrel

Ethylene

Beatrice the Bidogist

Impact 50/103

Universal implicit cross-certification is
the ethylene of trust

secYOUre 51/103

555555

Cross Certification

333333

Cross Certification

= Cross certification enables entities
in one public key infrastructure to
trust entities in another PKI

Impact SecYOUre 54/103
e,

Cross Certification

= Cross certification enables entities
in one public key infrastructure to
trust entities in another PKI

= This mutual trust relationship
@\ ,[;] should be typically supported by a
ﬁ = ﬁ cross-certification agreement
E]/ S g between the CAs in each PKI

Impact SecYOUre 54/103
e,

Cross Certification

= Cross certification enables entities
in one public key infrastructure to
trust entities in another PKI

= This mutual trust relationship

(i)
(I

< P should be typically supported by a
ﬁ = ﬁ cross-certification agreement
E]/ S g between the CAs in each PKI

= The agreement establishes the
responsabilities and liability of
each party

Impact SecYOUre 54/103
e,

Explicit Cross Certification

= Each CAisrequired toissue a
certificate to the other to establish
a relationship in both directions

Impact SecYOUre 55/103
e,

Explicit Cross Certification

Impact

= Each CAisrequired to issue a
certificate to the other to establish
a relationship in both directions

= The path of trust is not hierarchical,
although the separate PKls may be
certificate hierarchies

secYOUre

55/103

Explicit Cross Certification

= Each CAisrequired to issue a
certificate to the other to establish
a relationship in both directions

= The path of trust is not hierarchical,

@ [;] although the separate PKls may be
- s certificate hierarchies

,ﬁ - ﬁ\ = After two CAs have established and
E] E] specified the terms of trust and

issued the certificates to each
other, entities within the separate
PKls can interact subject to the
policies specified in the certificates

Impact SecYOUre 55/103
e,

X

\.

N
97
A

P
o &
.:AAMM% o

i &5

& F 4

& 7

L 4
&

Implicit Cross Certification

= Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted

Impact SecYOUre 58/103
N

Implicit Cross Certification

* Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted

* Equivalent to unbounded cross
certification among all CAs

Impact SecYOUre 58/103
N

Implicit Cross Certification

* Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted

«* Equivalent to unbounded cross
certification among all CAs

=" Any certificate can be trivially replaced by
a masquereder’s certificate from another
CA

Impact SecYOUre 58/103
N

Implicit Cross Certification

=" Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted

«* Equivalent to unbounded cross
certification among all CAs

=" Any certificate can be trivially replaced by
a masquereder’s certificate from another
CA

" The security of any certificate is reduced to
that of the least trustworthy CA, who can
issue bogus certificate to usurp the

legitimate one, at the same level of trust

Impact SecYOUre 58/103
N

CA Certificate in a MitM Proxy

Impact

News | Regter] Login
o

AboutUs Data Commu Automation Tralning & Services Partmers Contact Us

"LTOMOFEOMWS o

ToDay

L

COMPANY PROFILE

Company Profile Established n 2005,
focusing on Networking and Automaton businesses

Mission & Vision

ending FY-11. This
years. The company is

Business Values

products and is very specialzed and selective In ts product range. QUiCK FACTS
Selection criteria are based on: 5 Al Sharka Al Portsaideya st
+ Technalogy and product advances. o AsmaaF ahy s
* Manufacturer i commitied to support the business in our tertory Nasr iy, Caie
« High potential company with unfar market share

=
Phone: +(202) 200 9326
Faxs +(202) 2415 3505

fast growing with astret employes,
board. As well s being a market leader inresidentia automaton value added distibutor and
Tistin th

lines of

them,

59/103

Superfish Adware

Impact

PKl is Not Dead, Just Resting

PKI: It’s Not Dead, Just Resting

Peter Gutmann
University of Auckland
Abstract

Despite enthusiastic predictions in the trade press, an X.509-style PKI has so far failed to eventuate to any significant
degree. This paper looks at some of the reasons behind this, examining why a pure X.509-style PKI may never appear
outside a few closed, highly-controlled environments such as government agencies. On the other hand there are many
instances in which situation- and application-specific uses of certificates can be employed in a manner that avoids the
shortcomings of X.509"s one-size-(mis)fits-all approach. The paper examines a number of these situation-specific
approaches to working with certificates, and concludes with a collection of useful design rules to consider before
embarking on a PKI project.

1. Introduction

Impact 61/103

RADIOHEAD =

H_ _H
Cc=C_
H Ethylene H

e O EORERENCOURAGED

P\W sl krnvmagamsul eCom M4 153 0:KRA ; ;‘ '/ -'j 1 MI SF

They're young.
They're in love.
They're on the run.

KRISTIN HALBROOK

)
)
:\1“33"“

=]
=
™
m
x
B
-
m

memegeneratopnet

It is essential to have assurance about
the security of each implementation

of vulnerable key-generation
algorithm employed by trusted
credential issuers

secYOUre 72/103

Hundreds CAs

OS X Yosemite

Every bit as powerful as it looks.

i

1 CA certiiates installed

Have we sufficient assurance about
the hundreds CA certificates we daily

entrust our business upon?

Impact SecYOUre 74/103
ST

= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

CA‘B CA/BROWSER FORUM

Impact SecYOUre 75/103
I

= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

= CAkey generation to be carried out
within a device that meets the
requirements identified by some

CA‘B CA/BROWSER FORUM approved PP

Impact SecYOUre 75/103
I

= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

= CAkey generation to be carried out
within a device that meets the
requirements identified by some

CA‘B CA/BROWSER FORUM approved PP
= CEN Workshop Agreement 14167,

Part 2-3-4 are three of those PP

Impact SecYOUre 75/103
I

= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

= CAkey generation to be carried out
within a device that meets the
requirements identified by some

CA‘B CA/BROWSER FORUM approved PP
= CEN Workshop Agreement 14167,

Part 2-3-4 are three of those PP
= EAL4 Augmented

Impact SecYOUre 75/103
I

= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

= CAkey generation to be carried out
within a device that meets the
requirements identified by some

CA‘B CA/BROWSER FORUM approved PP
= CEN Workshop Agreement 14167,

Part 2-3-4 are three of those PP
EAL4 Augmented

Augmentation from adherence to
ADV_IMP.2, AVA_CCA.1, and
AVA_VLA4

Impact SecYOUre 75/103
I

ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

CA‘B CA/BROWSER FORUM

Impact SecYOUre 76/103
TS

ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

= Guaranteeing that the
implementation representation is
an accurate and complete
instantiation of the TSF

CA‘B CA/BROWSER FORUM requirements

Impact SecYOUre 76/103
TS

ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

= Guaranteeing that the
implementation representation is
an accurate and complete
instantiation of the TSF

CA‘B CA/BROWSER FORUM requirements
= Special emphasis on identifying

covert channels and estimating
their capacity

Impact SecYOUre 76/103
TS

ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

CA‘B CA/BROWSER FORUM

Guaranteeing that the
implementation representation is
an accurate and complete
instantiation of the TSF
requirements

Special emphasis on identifying
covert channels and estimating
their capacity

SETUP attacks makes use of the
key-generation as a covert channel
for itself

secYOUre 76/103

= Developerisin charge for the vulnerability
assessment and documentation

Impact SecYOUre 77/103
TS

= Developer is in charge for the vulnerability
assessment and documentation

= Conflicts with our threat model

Impact SecYOUre 77/103
TS

=" Developerisin charge for the vulnerability
assessment and documentation

Conflicts with our threat model

The evaluator is left with the
documentation and the implementation
representation to be assessed

Impact SecYOUre 77/103
TS

=" Developerisin charge for the vulnerability
assessment and documentation

Conflicts with our threat model

The evaluator is left with the
documentation and the implementation
representation to be assessed

«" Can the presence of backdoor can be ruled
out at the required assurance level?

Impact SecYOUre 77/103
TS

=" Developerisin charge for the vulnerability
assessment and documentation

Conflicts with our threat model

The evaluator is left with the
documentation and the implementation
representation to be assessed

=" Can the presence of backdoor can be ruled
out at the required assurance level?

* Formal methods required only at the two
highest levels (EAL6 and EALT)

Impact SecYOUre 77/103
TS

Developer is in charge for the vulnerability
assessment and documentation

Conflicts with our threat model

The evaluator is left with the
documentation and the implementation
representation to be assessed

Can the presence of backdoor can be ruled
out at the required assurance level?

Formal methods required only at the two
highest levels (EAL6 and EALT)
Implementation representation may
render backdoor detection unlikely (e.g.,
HDL at design time, netlist at fabrication
time)

secYOUre 77/103

Key Takeaway

As long as the implementations of RSA — or, more generally,
algorithms vulnerable to this class of attacks — used by trusted
entities (e.g., CA) cannot be audited by relying parties (e.g., x.509
end-entities), any trust-anchor for the same trusted entities (e.g.,
root certificate) is to be regarded as a potential backdoor

Impact SecYOUre 78/103
e L

Key Takeaway - Ctd

As long as the implementation of algorithms adopted by CAs and
vulnerable to this class of backdoors cannot be audited by relying

parties, the assurance provided by illusoryTLS (i.e., none
whatsoever) is not any different from the assurance provided by

systems relying upon TLS and RSA certificates for origin
authentication, confidentiality, and message integrity guarantees

Impact SecYOUre 79/103
I

Mitigations

= Key Pinning, RFC 7469, Public Key Pinning Extension for HTTP (HPKP), April
2015

= Certificate Transparency, RFC 6962, June 2013
= DANE, DNS-based Authentication of Named Entities, RFC 6698, August 2012

= Tack, Trust Assertions for Certificate Keys, draft-perrin-tls-tack-02.txt,
Expired

= Proper explicit cross-certification

Impact SecYOUre 80/103
TS

A Backdoor Embedding Algorithm

A Backdoor Embedding Algorithm SecYO Ure 81/103
Y

The subtleness of a backdoor planted in a cryptographic credential
resides in the absence of malicious logic in the system whose
security it erodes.

A Backdoor Embedding Algorithm SecYO Ure 82/103

An attack variant

ABaB)yanC - https://g‘ist.g‘ithub.com/ryancdotorg/18235723e926be0afbc§9m3

Embedding Algorithm

https://gist.github.com/ryancdotorg/18235723e926be0afbdd

1. Embed a Curve25519 public-key into the key-generator

A Backdoor Embedding Algorithm SecYO Ure 84/103

1. Embed a Curve25519 public-key into the key-generator
2. Generate an ephemeral Curve25519 key at random

A Backdoor Embedding Algorithm SecYO Ure 84/103

1. Embed a Curve25519 public-key into the key-generator
2. Generate an ephemeral Curve25519 key at random
3. Compute a shared secret using Elliptic Curve Diffie-Hellman

A Backdoor Embedding Algorithm SecYOUre 84/103

Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

S ORI

A Backdoor Embedding Algorithm SecYOUre 84/103

Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

5. Generate a normal RSA key using the seeded CSPRNG

S ORI

A Backdoor Embedding Algorithm SecYOUI‘e 84/103

Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

Generate a normal RSA key using the seeded CSPRNG

. Replace 32-bytes of the generated modulus with the ephemeral Curve25519
public-key

S ORI

o v

A Backdoor Embedding Algorithm SecYOUre 84/103

Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

Generate a normal RSA key using the seeded CSPRNG

. Replace 32-bytes of the generated modulus with the ephemeral Curve25519
public-key

7. Use the original prime factors to compute two new primes leading to a new

modulus embedding the ephemeral public-key

S ORI

o v

A Backdoor Embedding Algorithm SecYOUre 84/103

Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

Generate a normal RSA key using the seeded CSPRNG
. Replace 32-bytes of the generated modulus with the ephemeral Curve25519
public-key
7. Use the original prime factors to compute two new primes leading to a new
modulus embedding the ephemeral public-key
8. Output the RSA key with the secretly embedded backdoor

S ORI

o v

A Backdoor Embedding Algorithm SecYOUre 84/103

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

A Backdoor Embedding Algorithm SecYO Ure 85/103

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator

A Backdoor Embedding Algorithm SecYO Ure 85/103

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator
3. Uses the shared secret to seed the CSPRNG based on AES run in CTR mode

A Backdoor Embedding Algorithm SecYOUI‘e 85/103
ST

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator

3. Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
4. Generates a normal RSA key using the seeded CSPRNG

A Backdoor Embedding Algorithm SecYOUI‘e 85/103

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator

3. Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
4. Generates a normal RSA key using the seeded CSPRNG

5. Replaces 32-bytes of the generated modulus with the ephemeral
Curve25519 public-key

A Backdoor Embedding Algorithm SecYOUI‘e 85/103
ST

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator

3. Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
4. Generates a normal RSA key using the seeded CSPRNG

5. Replaces 32-bytes of the generated modulus with the ephemeral
Curve25519 public-key

6. Uses the original prime factors to compute two new primes leading to the
target modulus embedding the ephmeral public-key

A Backdoor Embedding Algorithm SecYOUre 85/103

Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator

3. Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
4. Generates a normal RSA key using the seeded CSPRNG

5. Replaces 32-bytes of the generated modulus with the ephemeral
Curve25519 public-key

6. Uses the original prime factors to compute two new primes leading to the
target modulus embedding the ephmeral public-key

7. Output the recovered RSA private key

A Backdoor Embedding Algorithm SecYOUre 85/103

Broken

= Although the idea is nice

= The key pairs generated using this
algorithm fall short in terms of
indistiguishability

= Itis easy to tell backdoored

certificates apart from genuine RSA

certificate using only black-box

access

A Backdoor Embedding Algorithm SecYOUre 86/103
ST

Does anybody see why this is the case?

A Backdoor Embedding Algorithm SecYO Ure 87/103
ST

Distinguishing Attack

= A public-key embedded into an RSA modulus

A Backdoor Embedding Algorithm SecYO Ure 88/103

Distinguishing Attack

= A public-key embedded into an RSA modulus
= Elliptic curve public-keys are points on the curve

A Backdoor Embedding Algorithm SecYO Ure 88/103

Distinguishing Attack

= A public-key embedded into an RSA modulus
= Elliptic curve public-keys are points on the curve

= And elliptic curve points are easily distinguished from uniform random
strings

A Backdoor Embedding Algorithm SecYOUre

88/103

Distinguishing Attack

= Apublic-key embedded into an RSA modulus
= Elliptic curve public-keys are points on the curve

= And elliptic curve points are easily distinguished from uniform random
strings
= Asecurity evaluator could check if the coordinates encoded using the

candidate 32-byte substrings of the modulus satisfy the elliptic curve
equation

A Backdoor Embedding Algorithm SecYOUre 88/103
..

Repairing the Backdoor

If we could make the elliptic curve
points indistinguishable from random
strings, then the backdoor
indistinguishability would be retained

A Backdoor Embedding Algor ithm SecYO Ure 89/103
G—————TT

Elligator

Censorship sucks!
Daniel J. Bernstein, Anna Krasnova,
Mike Hamburg, Tanja Lange

= an encoding for points on a single
curve as strings indistiguishable
from uniform random strings

* http://elligator.cr.yp.to

201010011001

A Backdoor Embedding Algorithm SecYOUI‘e 90/103

http://elligator.cr.yp.to

Inherently Dual Use

All cyber security technology is inherently dual use

A Backdoor Embedding Algerithm 91/103

Undetectability for Good or Ill

= Just like any and all cyber security
tools

= Undetectability of curve points can
be used for good orill

= For censorship-circumvention or
surveillance

© Graham McGeorge { Barcroft Media

A Backdoor Embedding Algorithm SecYOUI‘e 92/103
e e

Between Offense and Defense

| believe we can positively contribute
to the discussion and practice of
information security by walking the
fine line between offense and defense

A Backdoor Embedding Algorithm SecYO Ure 93/103
LSS

Website — http://illusorytls.com

illusoryTLS — https://github.com/secYOUre/illusoryTLS
pyelligator — https://github.com/secYOUre/pyelligator
rsaelligatorbd — https://github.com/secYOUre/rsaelligatorbd

s =m mm

'

A Backdoor Embedding Algorithm SecYOUI‘e 94/103
e

http://illusorytls.com
https://github.com/secYOUre/illusoryTLS
https://github.com/secYOUre/pyelligator
https://github.com/secYOUre/rsaelligatorbd

Elligator backdoor embedding

= Embed a Curve25519 public-key into the key-generator

MASTER_PUB_HEX = ’525e422e42c9c662362a7326c3c5c785ac7ef52e86782c4ac3c06887583e7a6f’
master_pub = unhex1lify(MASTER_PUB_HEX)

A Backdoor Embedding Algorithm SecYOUre 95/103

Elligator backdoor embedding

= Generate an ephemeral Curve25519 key at random and the associated
uniform representative string

while True:
private = urandom(32)
(v, pub, rep) = elligator.scalarbasemult(private)
ifv:
break

A Backdoor Embedding Algorithm SecYOUI‘e 95/103

Elligator backdoor embedding

= Compute a shared secret using ECDH
= Use the shared secret to seed a CSPRNG based on AES run in CTR mode

combine the ECDH keys to generate the seed
seed = nacl.crypto_box_beforenm(master_pub, private)

prng = AESPRNG (seed)

A Backdoor Embedding Algorithm SecYOUI‘e 95/103

Elligator backdoor embedding

= Generate a normal RSA key using the seeded CSPRNG

deterministic key generation from seed
rsa = build_key(embed=rep, pos=80, randfunc=prng.randbytes)

def build_key(bits=2048, e=65537, embed="’, pos=1, randfunc=None):

generate base key
rsa = RSA.generate(bits, randfunc)

A Backdoor Embedding Algorithm SecYOUI‘e 95/103

Elligator backdoor embedding

= Replace 32-bytes of the generated modulus with the representative string
associated to the ephemeral Curve25519 public-key

extract modulus as a string

n_str = unhexlify(str(hex(rsa.n))[2:-1])

embed data into the modulus

n_hex = hexlify(replace_at(n_str, embed, pos))

overwrite some bytes in orig at a specificed offset

def replace_at(orig, replace, offset):
return orig[0:offset] + replace + orig[offset+len(replace):]

A Backdoor Embedding Algorithm SecYOUI‘e 95/103

Elligator backdoor embedding

= Use the original prime factors to compute to new primes leading to a new
modulus embedding the uniform representative string

n = gmpy.mpz(n_hex, 16)
p=rsa.p
compute a starting point to look for a new q value
pre_g=n/p
use the next prime as the new q value
q = pre_q.next_prime()
n=p*q
phi = (p-1) * (q-1)
compute new private exponent
d = gmpy.invert(e, phi)
make sure that p is smaller than q
ifp>q:
(p, a) = (a4, p)

A Backdoor Embedding Algorithm SecYOUre 95/103

Elligator backdoor embedding

= Output the backdoored RSA key

return RSA.construct((long(n), long(e), long(d), long(p), long(q)))

A Backdoor Embedding Algorithm SecYOUre 95/103

Key Recovery

= Extracts the representative string from the target modulus

#Load an x.509 certificate froma file

x509 = X509.load_cert(sys.argv([2])

Pull the modulus out of the certificate

orig_modulus = unhexlify(x509.get_pubkey().get_modulus())

(seed, rep) = recover_seed(key=sys.argv[1], modulus=orig_modulus, pos=80)

def recover_seed(key=’", modulus=None, pos=1):

rep = modulus[pos:pos+32]

A Backdoor Embedding Algorithm SecYOUI‘e 96/103
e I

Key Recovery

= Maps the representative string to the candidate ephemeral Curve25519
public-key

pub = elligator.representativetopublic(rep)

A Backdoor Embedding Algorithm SecYOUre 96/103

Key Recovery

= Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key-generator

= Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
def recover_seed(key="", modulus=None, pos=1):

recreate the master private key from the passphrase

master = sha256 (key) .digest()

#;lclompute seed with master private and ephemeral public key

return (nacl.crypto_box_beforenm(pub, master), rep)

(seed, rep) = recover_seed(key=sys.argv[1], modulus=orig_modulus, pos=80)
prng = AESPRNG (seed)

A Backdoor Embedding Algorithm SecYOUre 96/103
e I

Key Recovery

= Generates a normal RSA key using the seeded CSPRNG

deterministic key generation from seed
rsa = build_key(embed=rep, pos=80, randfunc=prng.randbytes)

def build_key(bits=2048, e=65537, embed="’, pos=1, randfunc=None):

generate base key
rsa = RSA.generate(bits, randfunc)

A Backdoor Embedding Algorithm SecYOUI‘e 96/103

Key Recovery

= Replaces 32-bytes of the generated modulus with the representative string
found in the target modulus

extract modulus as a string

n_str = unhexlify(str(hex(rsa.n))[2:-1])

embed data into the modulus

n_hex = hexlify(replace_at(n_str, embed, pos))

A Backdoor Embedding Algorithm SecYOUI‘e 96/103

Key Recovery

= Uses the original prime factors to compute two new primes leading to the
target modulus embedding the uniform representative string

n = gmpy.mpz(n_hex, 16)
p=rsa.p
compute a starting point to look for a new q value
pre_g=n/p
use the next prime as the new q value
q = pre_q.next_prime()
n=p*q
phi = (p-1) * (q-1)
compute new private exponent
d = gmpy.invert(e, phi)
make sure that p is smaller than q
ifp>q:
(p, a) = (a4, p)

A Backdoor Embedding Algorithm SecYOUre 96/103

Key Recovery

= Output the recovered RSA key

return RSA. construct((long(n), long(e), long(d), long(p), long(q)))

print rsa.exportKey ()

A Backdoor Embedding Algorithm SecYOUre 96/103

Demo

A Backdoor Embedding Algorithm SecYO Ure 97/103

Conclusions

Conclusions SeCYO Ure 98/103
e

‘ ‘ Though | am often in the depths of misery, there is still calmness, pure harmony) ’
and music inside me.
Vincent van Gogh

Though we are often in the depths of insecurity, there is still calmness, pure
harmony and music inside us.),

QUESTIONS?

104/103
Backup

Normal RSA Key Generation — Young and Yung

1.
2.
3.
4.
5.
6.
1.

Let e be the public RSA exponent (e.g., 216 + 1)

Choose a large number p randomly (e.g., 1024 bits long)
If pis composite or gcd(e,p — 1) # 1then goto to step 1
Choose a large number g randomly (e.g., 1024 bits long)
If g is composite or gcd(e,p — 1) # 1 then goto to step 3
Output the public-key (N = pg, e) and the private-key p

The private exponent d is found by solving for (d, k) in ed + k¢(n) = 1 using
the extended Euclidean algorithm

Backup 105/103

RSA Encryption/Decryption — Young and Yung

= N = p* g, where p and g are large primes known to the key owner
Everyone knows N and e

Let d be a privete key exponent where ed = Imod(p — 1)(g — 1)
To encrypt m € Z; (after padding) compute: ¢ = m*modN

To decrypt the ciphertext c compute: m = c¢?modN

As far as we know: Only with known factorization given N and e, one can
find d

Backup 106/103

Elliptic Curve Decision Diffie-Hellman Problem

= Let Can elliptic-curve equation over the finite field IF; with prime order n
= Let G be the base point of the curve

= Given three point elements (xG), (yG) and (zG)

= Decide whether (zG = xyG), or not

= Where (x,y,z) are chosen randomlyand 1 < x,y,z<n

Backup 107/103

	Web PKI is Fragile
	illusoryTLS
	Impact
	A Backdoor Embedding Algorithm
	Conclusions
	Backup

