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UNFORGETTABLE
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If only we could notice them
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PKI Dramas

China Internet Network Information Center (CNNIC), 2015
Lenovo, 2015

National Informatics Centre of India, 2014

ANSSI, 2013

Trustwave, 2012

Tilrktrust, 2011-2013

DigiNotar, 2011

Comodo, 2011

Verisign, 2010
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Unsuspecting Users




Remaining oblivious

Web PKl is Fragile 12/103



Silent Failure

()
9

HELLO? CAN ANYBODY HEAR ME?
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[me

At the intersection of software security and security software,
exploring, and trying to contain, the space of unanticipated state.
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Secure Backdoor

Almost safe
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1. Web PKl is Fragile

The sorrow state of the infrastructure we daily entrust our business upon

2. illusoryTLS
Nobody But Us Impersonate, Tamper, and Exploit
3. The Impact

Or, why one rotten apple spoils the whole barrel

4. A Backdoor Embedding Algorithm

Elligator turned to evil

5. Conclusions
The misery of our times
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= Timely topic often debated as matter for a government to legislate on
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= Timely topic often debated as matter for a government to legislate on

= Aspace that some entities might have practically explored regardless of the
policy framework
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= Timely topic often debated as matter for a government to legislate on

= Aspace that some entities might have practically explored regardless of the
policy framework

= Would we be able to notice if our communications were being exploited?
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How many of you think that
backdoors can be asymmetric?
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How many of you think that
backdoors can be planted in data?
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Common View

= Backdoors are symmetric

= Malicious logic in the target system code base

= Everyone with knowledge about the internals of the backdoor can exploit it
= Given enough skills and effort, code review can spot their presence
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= Backdoors can be asymmetric.
Their complete code does not enable anyone, except those with access to
the key-recovery system, to exploit the backdoor
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= Backdoors can be asymmetric.
Their complete code does not enable anyone, except those with access to

the key-recovery system, to exploit the backdoor
= Backdoors can be planted in data
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Backdoor is data, data is backdoor
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= The entire X.509 Web PKI security architecture falls apart, if a
single CA certificate with a secretly embedded backdoor enters
the certificate store of relying parties
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Web PKl is Fragile

The entire X.509 Web PKI security architecture falls apart, if a
single CA certificate with a secretly embedded backdoor enters

the certificate store of relying parties

Have we sufficient assurance that this did not happen already?
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illusoryTLS
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Underhanded Crypto Contest

illusoryTLS SecYOUre 27/103
'

‘ ‘ The Underhanded Crypto Contest
is a competition to write or modify
crypto code that appears to be
secure, but actually does

something evil ),




illusoryTLS

= Aninstance of the Young and Yung elliptic curve asymmetric backdoor in
RSA key generation
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Security Outcome

The backdoor completely perverts the security guarantees provided by the TLS
protocol, allowing the attacker to:

= Impersonate the endpoints (i.e., authentication failure)
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protocol, allowing the attacker to:

= Impersonate the endpoints (i.e., authentication failure)
= Tamper with their messages (i.e., integrity erosion)
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Security Outcome

The backdoor completely perverts the security guarantees provided by the TLS
protocol, allowing the attacker to:

= Impersonate the endpoints (i.e., authentication failure)
= Tamper with their messages (i.e., integrity erosion)
= Actively eavesdrop their communications (i.e., confidentiality loss)
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Threat Model

The backdoor designer can:

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”
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Threat Model

The backdoor designer can:

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

= “influence policies, standard and specifications for commercial public key
technologies.”
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Threat Model

The backdoor designer can:

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

= “influence policies, standard and specifications for commercial public key
technologies.”

= Interfere with the supply-chain
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Threat Model

The backdoor designer can:

illusoryTLS

= “Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

= “influence policies, standard and specifications for commercial public key
technologies.”

= Interfere with the supply-chain
= Disregard everything about policy
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Threat Model

The backdoor designer can:

illusoryTLS

“Insert vulnerabilities into commercial encryption systems, IT systems,
networks and endpoint communications devices used by targets.”

“influence policies, standard and specifications for commercial public key
technologies.”

Interfere with the supply-chain
Disregard everything about policy

Or, she is simply in the position to build the security module used by the
Certification Authority for generating the key material
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Three Modules

tj:: D &i
=D C= &=
Cert . Cert

Client Server
Store Store
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network-simple-tls

o T repoary Explore Gist Blog Help secvoure ++ @ & B
k0001 / network-simple-tls @Unwatch~ 4 Star 3 YFork 3
Haskell library for simple network sockets usage patterns using TLS security.
<> Code
119 commits 1 branc s 2
© tssues 3
P branch: master~  network-simple-tls / + 0 s
11 Pull requests
network-simple-ts-0.2.1
on Mar s, 2014 Latest comnit de3290133
™ examples Updated examples and removed the from cabal 2yearsa0 4 puce
B srcNetworSimpleTCP socketBackend: ensurs the number of received bytes ayearago
s Graphs
B gtignore gtignore 2 years ago
B travisymi travis ymi 2yearsago  wrTps done UR
B License Inia 2yearsago || MEEps://oichub.conkoo
You can done wih HTTPS, SSH,
B PeoPLE PEOPLE: Nickolay Kudasov 2yearsago u e
B READMEmd README.md: Add TravisCi build icon 2 years ago Ty
B setuphs Inta 2 years ago
B changelog.md network-simple-t-0.2.1 ayearago
B network-simple-ts cabal network-simple-t-0.2.1 ayearago
&2 README.md
netwark-simnle-tis -
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Echo service over TLS

= Ui

= &=
Cert . Cert

Store Client Internet Server Store
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Where is the backdoor?

If the client and server codeiis
contributed by an open-source project

and it is used as-is, where is the
backdoor?
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Where is the backdoor?

a5
Cert . Cert
Store Client Internet Server Store
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A Covert Channel

= The upper order bits of the RSA modulus encode the asymmetric
encryption of a seed generated at random
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A Covert Channel

= The upper order bits of the RSA modulus encode the asymmetric
encryption of a seed generated at random

= The same seed was used to generate one of the RSA primes of the CA
public-key modulus
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A Covert Channel

= The upper order bits of the RSA modulus encode the asymmetric
encryption of a seed generated at random

= The same seed was used to generate one of the RSA primes of the CA
public-key modulus

= The RSA modulusis at the same time a RSA public-key and an ciphertext
that gives to the backdoor designer the ability to factor with ease the
modulus
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Where the backdoor is not

No backdoor was slipped into the
cryptographic credentials issued to
the communicating endpoints
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SETUP Attacks

= Notion introduced by Adam Young
and Moti Yung at Crypto '96

= Young and Yung elliptic-curve
asymmetric backdoor in RSA key
generation

= Expands on ‘A Space Efficient
Backdoorin RSA and its
Applications’, Selected Areas in
Cryptography ’05

= Aworking implementation at

http://cryptovirology.com
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http://cryptovirology.com

They're young
They're in love.
A They're on the run.

= The exploitation requires access to
resources not embedded in the
backdoor itself

= e.g., elliptic-curve private key

= The vulnerability can be exploited

by the backdoor designer and by

whoever gains access to the
associated key-recovery system

1l

KRISTIN HALBROOK

5
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How many of you believe that it is
possible to forbid an enemy
intelligence organization from gaining
access to a private key?
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Indistinguishability

Assuming ECDDH holds

The backdoor key pairs appear to
all probabilistic polynomial time
algorithms like genuine RSA key
pairs

= Black-box access to the
key-generator does not allow
detection

© Graham eorge f Barcroft Media
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Forward Secrecy

= If areverse-engineer breaches the
key-generator, then the previously
stolen information remains
confidential
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“ = The backdoor can be used multiple
' ‘ times and against multiple targets

)L 4
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A Subtle Attack

= Break TLS security guarantees at will
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A Subtle Attack

Break TLS security guarantees at will

Impersonation (e.g., authentication
failure)

Message tampering (e.g., integrity erosion)

Active eavesdropping of encrypted
communications (e.g., confidentiality loss)

« No need to have access to any private key
used by system actors

= No need to tamper with the
communicating endpoints

«" Need to retain control over the
key-generation of the target RSA modulus
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Is the malicious implementer a threat
mitigated by IT product security
certifications?
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Fictional Security

Asingle CA certificate with a secretly embedded backdoor renders the entire TLS security fictional
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One Rotten Apple...




... spoils the whole barrel

sp0|ls the whole ba rrel




Ethylene

Beatrice the Bidogist
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Universal implicit cross-certification is
the ethylene of trust
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Cross Certification
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Cross Certification

= Cross certification enables entities
in one public key infrastructure to
trust entities in another PKI
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Cross Certification

= Cross certification enables entities
in one public key infrastructure to
trust entities in another PKI

= This mutual trust relationship
@\ ,[;] should be typically supported by a
ﬁ = ﬁ cross-certification agreement
E]/ S g between the CAs in each PKI
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Cross Certification

= Cross certification enables entities
in one public key infrastructure to
trust entities in another PKI

= This mutual trust relationship

(i)
(I

< P should be typically supported by a
ﬁ = ﬁ cross-certification agreement
E]/ S g between the CAs in each PKI

= The agreement establishes the
responsabilities and liability of
each party
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Explicit Cross Certification

= Each CAisrequired toissue a
certificate to the other to establish
a relationship in both directions
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Explicit Cross Certification

Impact

= Each CAisrequired to issue a
certificate to the other to establish
a relationship in both directions

= The path of trust is not hierarchical,
although the separate PKls may be
certificate hierarchies
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Explicit Cross Certification

= Each CAisrequired to issue a
certificate to the other to establish
a relationship in both directions

= The path of trust is not hierarchical,

@ [;] although the separate PKls may be
- s certificate hierarchies

,ﬁ - ﬁ\ = After two CAs have established and
E] E] specified the terms of trust and

issued the certificates to each
other, entities within the separate
PKls can interact subject to the
policies specified in the certificates
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Implicit Cross Certification

= Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted
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of implicit cross certification in which all
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* Equivalent to unbounded cross
certification among all CAs
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Implicit Cross Certification

* Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted

«* Equivalent to unbounded cross
certification among all CAs

=" Any certificate can be trivially replaced by
a masquereder’s certificate from another
CA
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Implicit Cross Certification

=" Most current PKI software employs a form
of implicit cross certification in which all
root CAs are equally trusted

«* Equivalent to unbounded cross
certification among all CAs

=" Any certificate can be trivially replaced by
a masquereder’s certificate from another
CA

" The security of any certificate is reduced to
that of the least trustworthy CA, who can
issue bogus certificate to usurp the

legitimate one, at the same level of trust
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CA Certificate in a MitM Proxy

Impact

News | Regter] Login
o
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COMPANY PROFILE

Company Profile Established n 2005,
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Mission & Vision

ending FY-11. This
years. The company is

Business Values
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Selection criteria are based on: 5 Al Sharka Al Portsaideya st
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=
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Superfish Adware
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PKl is Not Dead, Just Resting

PKI: It’s Not Dead, Just Resting

Peter Gutmann
University of Auckland
Abstract

Despite enthusiastic predictions in the trade press, an X.509-style PKI has so far failed to eventuate to any significant
degree. This paper looks at some of the reasons behind this, examining why a pure X.509-style PKI may never appear
outside a few closed, highly-controlled environments such as government agencies. On the other hand there are many
instances in which situation- and application-specific uses of certificates can be employed in a manner that avoids the
shortcomings of X.509"s one-size-(mis)fits-all approach. The paper examines a number of these situation-specific
approaches to working with certificates, and concludes with a collection of useful design rules to consider before
embarking on a PKI project.

1. Introduction
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They're young.
They're in love.
They're on the run.
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It is essential to have assurance about
the security of each implementation

of vulnerable key-generation
algorithm employed by trusted
credential issuers
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Hundreds CAs

OS X Yosemite

Every bit as powerful as it looks.

i

1 CA certiiates installed




Have we sufficient assurance about
the hundreds CA certificates we daily

entrust our business upon?
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= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

CA‘B CA/BROWSER FORUM
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= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

= CAkey generation to be carried out
within a device that meets the
requirements identified by some

CA‘B CA/BROWSER FORUM approved PP
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= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3
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within a device that meets the
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CA‘B CA/BROWSER FORUM approved PP
= CEN Workshop Agreement 14167,

Part 2-3-4 are three of those PP
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= Publicly trusted certificates to be
issued in compliance with
European Standard EN 319 411-3

= CAkey generation to be carried out
within a device that meets the
requirements identified by some

CA‘B CA/BROWSER FORUM approved PP
= CEN Workshop Agreement 14167,

Part 2-3-4 are three of those PP
EAL4 Augmented

Augmentation from adherence to
ADV_IMP.2, AVA_CCA.1, and
AVA_VLA4
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ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

CA‘B CA/BROWSER FORUM
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ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

= Guaranteeing that the
implementation representation is
an accurate and complete
instantiation of the TSF

CA‘B CA/BROWSER FORUM requirements
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ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

= Guaranteeing that the
implementation representation is
an accurate and complete
instantiation of the TSF

CA‘B CA/BROWSER FORUM requirements
= Special emphasis on identifying

covert channels and estimating
their capacity
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ADV_IMP.2,AVA_CCA.1,and AVA_VLA.4

= Focused on assessing the
vulnerabilities in the TOE

CA‘B CA/BROWSER FORUM

Guaranteeing that the
implementation representation is
an accurate and complete
instantiation of the TSF
requirements

Special emphasis on identifying
covert channels and estimating
their capacity

SETUP attacks makes use of the
key-generation as a covert channel
for itself

secYOUre 76/103



= Developerisin charge for the vulnerability
assessment and documentation
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= Developer is in charge for the vulnerability
assessment and documentation

= Conflicts with our threat model
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=" Developerisin charge for the vulnerability
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The evaluator is left with the
documentation and the implementation
representation to be assessed

«" Can the presence of backdoor can be ruled
out at the required assurance level?
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=" Developerisin charge for the vulnerability
assessment and documentation

Conflicts with our threat model

The evaluator is left with the
documentation and the implementation
representation to be assessed

=" Can the presence of backdoor can be ruled
out at the required assurance level?

* Formal methods required only at the two
highest levels (EAL6 and EALT)
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Developer is in charge for the vulnerability
assessment and documentation

Conflicts with our threat model

The evaluator is left with the
documentation and the implementation
representation to be assessed

Can the presence of backdoor can be ruled
out at the required assurance level?

Formal methods required only at the two
highest levels (EAL6 and EALT)
Implementation representation may
render backdoor detection unlikely (e.g.,
HDL at design time, netlist at fabrication
time)
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Key Takeaway

As long as the implementations of RSA — or, more generally,
algorithms vulnerable to this class of attacks — used by trusted
entities (e.g., CA) cannot be audited by relying parties (e.g., x.509
end-entities), any trust-anchor for the same trusted entities (e.g.,
root certificate) is to be regarded as a potential backdoor
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Key Takeaway - Ctd

As long as the implementation of algorithms adopted by CAs and
vulnerable to this class of backdoors cannot be audited by relying

parties, the assurance provided by illusoryTLS (i.e., none
whatsoever) is not any different from the assurance provided by

systems relying upon TLS and RSA certificates for origin
authentication, confidentiality, and message integrity guarantees
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Mitigations

= Key Pinning, RFC 7469, Public Key Pinning Extension for HTTP (HPKP), April
2015

= Certificate Transparency, RFC 6962, June 2013
= DANE, DNS-based Authentication of Named Entities, RFC 6698, August 2012

= Tack, Trust Assertions for Certificate Keys, draft-perrin-tls-tack-02.txt,
Expired

= Proper explicit cross-certification
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A Backdoor Embedding Algorithm
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The subtleness of a backdoor planted in a cryptographic credential
resides in the absence of malicious logic in the system whose
security it erodes.
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An attack variant

ABaB)yanC - https://g‘ist.g‘ithub.com/ryancdotorg/18235723e926be0afbc§9m3

Embedding Algorithm


https://gist.github.com/ryancdotorg/18235723e926be0afbdd

1. Embed a Curve25519 public-key into the key-generator
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1. Embed a Curve25519 public-key into the key-generator
2. Generate an ephemeral Curve25519 key at random
3. Compute a shared secret using Elliptic Curve Diffie-Hellman
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Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

S ORI
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Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

Generate a normal RSA key using the seeded CSPRNG

. Replace 32-bytes of the generated modulus with the ephemeral Curve25519
public-key

S ORI

o v
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Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

Generate a normal RSA key using the seeded CSPRNG

. Replace 32-bytes of the generated modulus with the ephemeral Curve25519
public-key

7. Use the original prime factors to compute two new primes leading to a new

modulus embedding the ephemeral public-key

S ORI
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Embed a Curve25519 public-key into the key-generator
Generate an ephemeral Curve25519 key at random
Compute a shared secret using Elliptic Curve Diffie-Hellman

Use the shared secret to seed at cryptographically secure pseudo-random
number generator (CSPRNG) based on AES run in CTR mode

Generate a normal RSA key using the seeded CSPRNG
. Replace 32-bytes of the generated modulus with the ephemeral Curve25519
public-key
7. Use the original prime factors to compute two new primes leading to a new
modulus embedding the ephemeral public-key
8. Output the RSA key with the secretly embedded backdoor

S ORI

o v
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Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus
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Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator
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Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator
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Key Recovery

1. Extracts the ephemeral Curve25519 public-key from the target modulus

2. Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key generator

3. Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
4. Generates a normal RSA key using the seeded CSPRNG

5. Replaces 32-bytes of the generated modulus with the ephemeral
Curve25519 public-key

6. Uses the original prime factors to compute two new primes leading to the
target modulus embedding the ephmeral public-key

7. Output the recovered RSA private key
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Broken

= Although the idea is nice

= The key pairs generated using this
algorithm fall short in terms of
indistiguishability

= Itis easy to tell backdoored

certificates apart from genuine RSA

certificate using only black-box

access
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Does anybody see why this is the case?
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Distinguishing Attack

= A public-key embedded into an RSA modulus
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Distinguishing Attack

= Apublic-key embedded into an RSA modulus
= Elliptic curve public-keys are points on the curve

= And elliptic curve points are easily distinguished from uniform random
strings
= Asecurity evaluator could check if the coordinates encoded using the

candidate 32-byte substrings of the modulus satisfy the elliptic curve
equation
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Repairing the Backdoor

If we could make the elliptic curve
points indistinguishable from random
strings, then the backdoor
indistinguishability would be retained
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Elligator

Censorship sucks!
Daniel J. Bernstein, Anna Krasnova,
Mike Hamburg, Tanja Lange

= an encoding for points on a single
curve as strings indistiguishable
from uniform random strings

* http://elligator.cr.yp.to

201010011001
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Inherently Dual Use

All cyber security technology is inherently dual use
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Undetectability for Good or Ill

= Just like any and all cyber security
tools

= Undetectability of curve points can
be used for good orill

= For censorship-circumvention or
surveillance

© Graham McGeorge { Barcroft Media
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Between Offense and Defense

| believe we can positively contribute
to the discussion and practice of
information security by walking the
fine line between offense and defense
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Website — http://illusorytls.com

illusoryTLS — https://github.com/secYOUre/illusoryTLS
pyelligator — https://github.com/secYOUre/pyelligator
rsaelligatorbd — https://github.com/secYOUre/rsaelligatorbd

s =m mm

'
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Elligator backdoor embedding

= Embed a Curve25519 public-key into the key-generator

MASTER_PUB_HEX = ’525e422e42c9c662362a7326c3c5c785ac7ef52e86782c4ac3c06887583e7a6f’
master_pub = unhex1lify(MASTER_PUB_HEX)

A Backdoor Embedding Algorithm SecYOUre 95/103



Elligator backdoor embedding

= Generate an ephemeral Curve25519 key at random and the associated
uniform representative string

while True:
private = urandom(32)
(v, pub, rep) = elligator.scalarbasemult(private)
ifv:
break

A Backdoor Embedding Algorithm SecYOUI‘e 95/103



Elligator backdoor embedding

= Compute a shared secret using ECDH
= Use the shared secret to seed a CSPRNG based on AES run in CTR mode

# combine the ECDH keys to generate the seed
seed = nacl.crypto_box_beforenm(master_pub, private)

prng = AESPRNG (seed)
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Elligator backdoor embedding

= Generate a normal RSA key using the seeded CSPRNG

# deterministic key generation from seed
rsa = build_key(embed=rep, pos=80, randfunc=prng.randbytes)

def build_key(bits=2048, e=65537, embed="’, pos=1, randfunc=None):

# generate base key
rsa = RSA.generate(bits, randfunc)
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Elligator backdoor embedding

= Replace 32-bytes of the generated modulus with the representative string
associated to the ephemeral Curve25519 public-key

# extract modulus as a string

n_str = unhexlify(str(hex(rsa.n))[2:-1])

# embed data into the modulus

n_hex = hexlify(replace_at(n_str, embed, pos))

# overwrite some bytes in orig at a specificed offset

def replace_at(orig, replace, offset):
return orig[0:offset] + replace + orig[offset+len(replace):]
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Elligator backdoor embedding

= Use the original prime factors to compute to new primes leading to a new
modulus embedding the uniform representative string

n = gmpy.mpz(n_hex, 16)
p=rsa.p
# compute a starting point to look for a new q value
pre_g=n/p
# use the next prime as the new q value
q = pre_q.next_prime()
n=p*q
phi = (p-1) * (q-1)
# compute new private exponent
d = gmpy.invert(e, phi)
# make sure that p is smaller than q
ifp>q:
(p, a) = (a4, p)
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Elligator backdoor embedding

= Output the backdoored RSA key

return RSA.construct((long(n), long(e), long(d), long(p), long(q)))
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Key Recovery

= Extracts the representative string from the target modulus

#Load an x.509 certificate froma file

x509 = X509.load_cert(sys.argv([2])

# Pull the modulus out of the certificate

orig_modulus = unhexlify(x509.get_pubkey().get_modulus())

(seed, rep) = recover_seed(key=sys.argv[1], modulus=orig_modulus, pos=80)

def recover_seed(key=’", modulus=None, pos=1):

rep = modulus[pos:pos+32]
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Key Recovery

= Maps the representative string to the candidate ephemeral Curve25519
public-key

pub = elligator.representativetopublic(rep)
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Key Recovery

= Computes the shared secret via ECDH and using the private-key associated
to the public-key embedded in the key-generator

= Uses the shared secret to seed the CSPRNG based on AES run in CTR mode
def recover_seed(key="", modulus=None, pos=1):

# recreate the master private key from the passphrase

master = sha256 (key) .digest()

#;lclompute seed with master private and ephemeral public key

return (nacl.crypto_box_beforenm(pub, master), rep)

(seed, rep) = recover_seed(key=sys.argv[1], modulus=orig_modulus, pos=80)
prng = AESPRNG (seed)
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Key Recovery

= Generates a normal RSA key using the seeded CSPRNG

# deterministic key generation from seed
rsa = build_key(embed=rep, pos=80, randfunc=prng.randbytes)

def build_key(bits=2048, e=65537, embed="’, pos=1, randfunc=None):

# generate base key
rsa = RSA.generate(bits, randfunc)
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Key Recovery

= Replaces 32-bytes of the generated modulus with the representative string
found in the target modulus

# extract modulus as a string

n_str = unhexlify(str(hex(rsa.n))[2:-1])

# embed data into the modulus

n_hex = hexlify(replace_at(n_str, embed, pos))
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Key Recovery

= Uses the original prime factors to compute two new primes leading to the
target modulus embedding the uniform representative string

n = gmpy.mpz(n_hex, 16)
p=rsa.p
# compute a starting point to look for a new q value
pre_g=n/p
# use the next prime as the new q value
q = pre_q.next_prime()
n=p*q
phi = (p-1) * (q-1)
# compute new private exponent
d = gmpy.invert(e, phi)
# make sure that p is smaller than q
ifp>q:
(p, a) = (a4, p)
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Key Recovery

= Output the recovered RSA key

return RSA. construct((long(n), long(e), long(d), long(p), long(q)))

print rsa.exportKey ()
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Demo
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Conclusions
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‘ ‘ Though | am often in the depths of misery, there is still calmness, pure harmony ) ’
and music inside me.
Vincent van Gogh



Though we are often in the depths of insecurity, there is still calmness, pure
harmony and music inside us. ),






QUESTIONS?
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Normal RSA Key Generation — Young and Yung

1.
2.
3.
4.
5.
6.
1.

Let e be the public RSA exponent (e.g., 216 + 1)

Choose a large number p randomly (e.g., 1024 bits long)
If pis composite or gcd(e,p — 1) # 1then goto to step 1
Choose a large number g randomly (e.g., 1024 bits long)
If g is composite or gcd(e,p — 1) # 1 then goto to step 3
Output the public-key (N = pg, e) and the private-key p

The private exponent d is found by solving for (d, k) in ed + k¢(n) = 1 using
the extended Euclidean algorithm
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RSA Encryption/Decryption — Young and Yung

= N = p* g, where p and g are large primes known to the key owner
Everyone knows N and e

Let d be a privete key exponent where ed = Imod(p — 1)(g — 1)
To encrypt m € Z; (after padding) compute: ¢ = m*modN

To decrypt the ciphertext c compute: m = c¢?modN

As far as we know: Only with known factorization given N and e, one can
find d
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Elliptic Curve Decision Diffie-Hellman Problem

= Let Can elliptic-curve equation over the finite field IF; with prime order n
= Let G be the base point of the curve

= Given three point elements (xG), (yG) and (zG)

= Decide whether (zG = xyG), or not

= Where (x,y,z) are chosen randomlyand 1 < x,y,z<n
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