Port scan is not for pussies

Know yourself, know your enemy

Fred RAYNAL
fraynal@quarkslab.com
@fredraynal

Adrien GUINET
aguinet@quarkslab.com
@adriengnt
How did it start?

I want to scan the Internet!!!

- Scan for obscure web forums to gather versions of phpBB, vBulletin and others
- Scan for card sharing servers
- Get carrot juice, a veggie burger and some sleep
- Idea: scan for everything everywhere
- Internet Census (2012): well played, f*****g Carna Botnet
Why do we care about network recon?

Motivation

- For attackers: information is as valuable as 0 days
 - Allow to build the attack path
 - Avoid wasting 0 days
 - Find opportunistic targets
- For defenders: learn about yourself
 - *Should* allow to learn about their own attack surface
 - *Should* guide to concentrate defenses where one is the most exposed and sensitive
I need an engineer
Targeting: snipe or mass destruction?
What can be done / found on the Internet

Roadmap

This talk
- Engineering: how to design an Internet wide scanner
- Targeting: what is a target?
- Applications: what we find on the Internet
Plan

1. I need an engineer
 - Overview
 - Defuse mines: why port scan is not for pussies
 - Scalability: I need a medic
 - Optimization: I REALLY need an engineer
 - Another step with libleeloo and nodescan

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
Plan

1. I need an engineer
 - Overview
 - Defuse mines: why port scan is not for pussies
 - Scalability: I need a medic
 - Optimization: I REALLY need an engineer
 - Another step with libleeloo and nodescan

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
Tools of the trade

Well known tools for pentesters

- Port scanners: nmap, zmap, masscan...
- Banner grabbers++: snmpwalk, ssllscanner, nikto, BlindElephant, ...
- OS fingerprinting: nmap, pOf, sinFP...
Tools of the trade

Well known tools for pentesters

- Port scanners: nmap, zmap, masscan...
- Banner grabbers++: snmpwalk, sslscanner, nikto, BlindElephant, ...
- OS fingerprinting: nmap, pOf, sinFP...

Problems

- Distribution and scalability
- No searchable web interface
Hmm, it looks like Vulnerability scanner?

It looks like, but it does not taste like!

- Try to scan a /B with Qualys / Nessus / *
 - Expensive: need to sell your kid’s kidneys at least
 - Super slow: imagine the 1,000,000+ page PDF report
- Might do something with Metasploit
 - Add an efficient port scanner
 - Add a database and index the results
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Overview

Hmm, it looks like Vulnerability scanner?

It looks like, but it does not taste like!

- Try to scan a /B with Qualys / Nessus / *
 - Expensive: need to sell your kid’s kidneys at least
 - Super slow: imagine the 1,000,000+ page PDF report

- Might do something with Metasploit
 - Add an efficient port scanner
 - Add a database and index the results

Problems: size matters

- Costs
- SCALING again!
I need an engineer

Overview

Defuse mines: why port scan is not for pussies

Scalability: I need a medic

Optimization: I REALLY need an engineer

Another step with libleeloo and nodescan

Targeting: snipe or mass destruction?

What can be done / found on the Internet
Needs and objectives

What we want

- Collect L7 unstructured information: texts, certificates, images, keys...
- Analyze all the unstructured information

How to get it

- Distribute multiple scans among multiple probes
- Thin probes: “local” view of the scan, they only know what they scan, nothing else
- Dynamic scalability:
 - Add/remove targets on the fly
 - Add/remove probes on the fly
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Defuse mines: why port scan is not for pussies

Design: piece of cake!

KISS = Keep It Simple, Stupid

- Use a port scanner and a few other tools
- Distribute the scan job among n machines with for instance RabbitMQ
- Gather the data in a big database
I LOVE IT WHEN A PLAN COMES TOGETHER.
Plan

1. I need an engineer
 - Overview
 - Defuse mines: why port scan is not for pussies
 - Scalability: I need a medic
 - Optimization: I REALLY need an engineer
 - Another step with libleeloo and nodescan

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
At first, we had nmap

Pros
- Stable and widely used
- Powerful NSE scripts engine
- Correctly fast with good timing options

Cons
- Runs on a single host
- Can not add target on the fly (even with -iL -)
At first, we had nmap

Remarks
- Scan targets by group and wait for answers
- Multiple "waiting" sessions
- This is where masscan and zmap are somehow better
Multiple nmap: one to rule them all?

On a single host

- Network exhaustion
- Process limitation
- No synchronization between the processes

⇒ Worst on multiple hosts!
Still waiting a lot...
How to be scalable?
How to synchronize the probes?

I LOVE IT WHEN A PLAN COMES TOGETHER.
Becoming scalable: a first try

Examples with 3 probes

- Divide the target set in 3
- Give each host a third of the target space
- Collect the results from the probes
Can not add new targets
Can not add new probes
⇒ This is not scalability

I LOVE IT WHEN A PLAN COMES TOGETHER.
Becoming scalable: the plan B

Being scalable
- Divide the target set in fixed-size randomized blocks of IPs/blocks
- Create a queue of tasks to perform
- Send them to your probes on-demand

Scalability 101: what we need
- A message passing protocol (rabbitmq, mpi, ...) to give orders and get back the results
- A scanner (nmap for now)
- Something to keep track of what’s been done
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Scalability: I need a medic

Becoming scalable: the plan B (what we need)

Another piece of cake
- A library that randomize the target set
- AMQP for the task management and tracking

Extra-bonus
- Probes are on a need-to-know basics
- New probes can be added on the fly, they just grab new tasks
- Probes can get away without ACKing a task, it will be performed by a new one
How to distribute the target on a need-to-know basis?

Can not add new targets (still)

I LOVE IT WHEN A PLAN COMES TOGETHER.
Splitting the targets

What is a target?
- A target is a union / exclusion of intervals of IP addresses

Naive algorithm
- Create a list of all unique IP addresses
- Randomize the set to avoid consecutive scanning (thus complains)
$2^{32} \text{ IP} \times 4 \text{ bytes} = 16 \text{Gb in RAM : (}$

I LOVE IT WHEN A PLAN COMES TOGETHER.
Splitting the targets with a PRNG

Step 1: initial configuration

- Wanted ranges are the full lines
- Excluded ranges are the dashed lines

IPv4 space

Memory storage

0

\[2^{32}\]

A IPs

C IPs

D IPs

B IPs
Splitting the targets with a PRNG

Step 2: sorting and merging intervals

IPv4 space

Memory storage

0

2**32

B IPs

C+D−A IPs
Splitting the targets with a PRNG

Randomization

- There are $N (=C+D+B-A)$ IPs among $R (=2)$ distinct ranges
- Compute a random permutation of $[0..N[$
- For each integer i of this permutation, grab the IP at the i-th index
- Create blocks of G (=4 for instance) randomly chosen IPs and send them to the probes
- An example: $[30, 10, 5, 42, 20, 28, 48, 49, \ldots]$
This is where we are now thanks to distribution of the scan
⇒ Time for optimization!
Plan

1. I need an engineer
 - Overview
 - Defuse mines: why port scan is not for pussies
 - Scalability: I need a medic
 - Optimization: I REALLY need an engineer
 - Another step with libleeloo and nodescan

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Optimization: I REALLY need an engineer

Optimization: upgrade the scanner

<table>
<thead>
<tr>
<th>zmap</th>
<th>masscan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous I/O engine for the packets</td>
<td>Asynchronous I/O engine for the packets</td>
</tr>
<tr>
<td>Can share a target on several hosts</td>
<td>Can share a target on several hosts</td>
</tr>
<tr>
<td>Can not add probes dynamically</td>
<td>Can not add probes dynamically</td>
</tr>
<tr>
<td>Can not add targets on the fly</td>
<td>Can not add targets on the fly</td>
</tr>
<tr>
<td>Scripting is a pain</td>
<td>Scripting is a pain++</td>
</tr>
<tr>
<td>Requires a Telco for a maximum efficiency</td>
<td>Requires a Telco for a maximum efficiency</td>
</tr>
</tbody>
</table>
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Optimization: I REALLY need an engineer

Keep in mind...

Scanning very large sets of IPs dynamically is not only about sending packets as fast as possible...

The Devil is in the details!

Scanning the results of a scan

- You scan a large set of IPs
- You sort the result according to whatever criteria (port 1234 open)
- You want to rescan this subset
- Problem: you now have like 200k small intervals of IPs

⇒ Adding and looking up are complexity killing operations too
IP intervals management: intervals add performances

Benchmarks done on a Core i7-3520M

- Masscan
- Zmap
- Leeloo
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Optimization: I REALLY need an engineer

IP intervals management: random lookup performances

Lookup performances

- **libleeloo** and **masscan** can provide about **12,204,000** random lookups/second
IP intervals management

zmap

- **Model**: intervals stored as a tree (lower memory usage), only support CIDR ranges
- **Add**: logarithmic complexity since the tree is balanced
- **Lookup**: complexity depending on the height of the tree

masscan

libleeloo
IP intervals management

- **zmap**

- **masscan**
 - **Model**: list of intervals stored as pairs of uint32 in an array
 - **Add**: exponential complexity since checking the new one is not already in a former one
 - **Lookup**: logarithmic by using a pre-computed cache (non configurable size)

- **libleeloo**
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Optimization: I REALLY need an engineer

IP intervals management

- **zmap**

- **masscan**

- **libleeloo**
 - **Model**: same as masscan
 - **Add**: just add the new intervals in the array, aggregate once at the end
 - **Lookup**: logarithmic, also using a cache of configurable size (user-defined memory/performance trade-off)
The scanner of our dreams

What we dream of?
- SYN engine as efficient as masscan
- Scripting as easy as nmap
- Can run as a daemon to stream targets as they come

Patching nmap / zmap / masscan? You have said patching?
- Need to change core components, not maintainable on a long run
- Can not support properties for IPs
- Can not support complex scan actions at layer 7
Plan

1. I need an engineer
 - Overview
 - Defuse mines: why port scan is not for pussies
 - Scalability: I need a medic
 - Optimization: I REALLY need an engineer
 - Another step with lilleeloo and nodescan

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
libleeloo: intervals and properties

libleeloo

- A **C++ library** with Python bindings
- Manage intervals of IPs as seen previously
- Support *properties*
- Available at https://github.com/quarkslab/libleeloo

Properties?

- Specific information for some IPs or ranges
- Custom TCP/UDP ports, specific credentials to test, ...
Example: using multiple properties to IPs intervals

```python
import pyleeloo
ranges = pyleeloo.ip_list_intervals_with_properties()

# The organisation’s range
ranges.add("192.42.0.0/16")

# SSH servers
ranges.add_property("192.42.4.0/24", [22, 2222])

# VPN servers
ranges.add_property("192.42.4.10-20", [1194])

ranges.aggregate()

def merge_ports(portsA, portsB):
    portsA.extend(portsB)
ranges.aggregate_properties(merge_ports)

print(ranges.property_of("192.42.66.0"))
>>> None

print(ranges.property_of("192.42.4.1"))
>>> [22, 2222]

print(ranges.property_of("192.42.4.15"))
>>> [22, 2222, 1194]
```
Nodescan

A L7 asynchronous engine

- A **C++ library** with Python bindings to build a custom L7 scanner
- L7 Python scripting à la node.js with callback definitions
- Support scan pause and resume
- Allow complex actions like in SSL, SSH, SIP, ...
- Built on asynchronous UNIX sockets (for now)
- Beta on https://github.com/quarkslab/nodescan
Scanning L7 with nodescan: architecture

Targets definitions
Level 4: IP/port

Scan engine
Check targets availability, call user-defined callbacks and process timeouts

Level 7 processing
User defined processing callbacks (plugins)

Reinject new targets
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Another step with libeloo and nodescan

Scanning L7 with nodescan by example

Classical way, with a list of IPs and ports

```
1 import pyleeloo
2 import pynodescan
3 from pyleeloo import tcp_port
4
5 ips = pyleeloo.ip_list_intervals()
6 ips.add("37.187.47-50.70-120")
7 ips.add("173.194.34.14")
8
9 ports = pyleeloo.port_list_intervals()
10 ports.add(tcp_port(80))
11 ports.add(tcp_port(22))
12 ports.add(tcp_port(443))
13
14 targets = pynodescan.IPV4TargetSet(ips, ports)
```
Scanning L7 with nodescan by example

By specifying a list of (IP, port) pairs

```python
1 targets = pynodescan.SimpleTargetSet()
2 targets.add_target("37.187.47.70", tcp_port(80));
3 targets.add_target("173.194.40.134", tcp_port(22));
```
Another step with libeloo and nodescan

Scanning L7 with nodescan by example

After the target, define how to reach them: the engine

```python
1 # 'nsockets' defines the number of concurrent asynchronous sockets used
2 engine = pynodescan.AsyncEngine(targets=targets, nsockets=10000, timeout=10)
```
Scanning L7 with nodescan: architecture

Targets definitions
Level 4: IP/port

Scan engine
Check targets availability, call user-defined callbacks and process timeouts

Level 7 processing
User defined processing callbacks (plugins)

Reinject new targets

Another step with libleeloo and nodescan
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Another step with libleeloo and nodescan

Scanning L7 with nodescan by example

Simple LVL4 connection to build a HTTP scrapper

```python
def send_payload(target, lvl4sm, hsm):
    # Send GET /
    target.send("GET / HTTP/1.0\n\n")
    # Trigger on newlines
    lvl4sm.set_char_data_trigger(’\n’, on_newline)
    # returns True to go on with this target
    return True

def on_newline(target, lvl4sm, hsm, buf):
    with open("res/%d" % target.ipv4(), "ab") as f:
        f.write(buf.tobytes())
    return True

engine.set_lvl4_connected_callback(send_payload)
```
Scanning L7 with nodescan by example

Getting to level 7...

- Classes that wrap level 7 protocols
- Provides specific callbacks: on_content, on_certificate, ...
- User just defines what to do on each event
- Currently supports HTTP, SSH and SSL public key/certificate grabbing and SIP headers
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Another step with libeloolo and nodescan

Scanning L7 with nodescan by example

Same with HTTP wrapper

```
1  def write_header(target, key, value):
2      with open("res/%d" % target.ipv4(), "wb") as f:
3          f.write("%s:␣%s\n", (key, value))
4  
5  def write_content(target, code, content):
6      with open("res/%d" % target.ipv4(), "wb") as f:
7          f.write(content.tobytes())
8  
9  HTTPGrabber =
10     pynodescan.protocols.HTTPMethod("GET", "/", {"User-agent": "pony\1.0"})
11         .on_header(write_header)
12         .on_content(write_content)
13         .on_error(lambda target, err: print((target, err), file=sys.stderr))
14
15     engine.set_lvl4_connected_callback(HTTPGrabber)
```
Try to grab SSL certificates only if the HTTP server answered

```python
# Remember, the target set is defined as a SimpleTargetSet
targets = pynodescan.SimpleTargetSet()
targets.add("X.X.X.X/24", tcp_port(80))
...
HTTPGrabber = HTTPGrabber.on_content(lambda target, lvl4sm, hsm, content:
    # Add a new target on the fly
    targets.add_target(target.ipv4(), tcp_port(443)))
SSLGrabber = pynodescan.protocols.SSL().on_certificate(save_certif)
engine.set_lvl4_connected_callback(
    PortRouter({tcp_port(80): HTTPGrabber,
                tcp_port(443): SSLGrabber}))
```
Nodescan: you have just seen the scripting

Scan engine
Check targets availability, call user-defined callbacks and process timeouts

Targets definitions
Level 4: IP/port

Level 7 processing
User defined processing callbacks (plugins)

Reinject new targets
Engineering conclusion

- Scanning large sets of IPs is not only about sending raw SYN packets
- Especially if you want to do that dynamically (adding targets or probes)
- Especially if you want to collect data at layer 7 and react accordingly
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?
 - What is a target?
 - Targeting subdomain *.gouv.fr
 - Retrieving the reverse whois database
 - Domain scrapping

3. What can be done / found on the Internet
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?
 - What is a target?
 - Targeting subdomain *.gouv.fr
 - Retrieving the reverse whois database
 - Domain scrapping

3. What can be done / found on the Internet
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

What is a target?

Target acquisition

What is a country / company / agency in the cyberspace?

- Domains ending with the same TLD (ex.: .fr)?
- Netblocks announced at some domestic peering exchange?
- Address registry allocation?
- GeoIP?

Target = *2IP

- Convert whatever to a set of IPs
- Take GeoIP
- Take ranges from RIPE, ARIN, ...
- Take netblocks from whois databases
- Take IP behind AS
Targeting a country

Country acquisition

- Based on GeoIP
- Outsource the problem of figuring it out
- Misses some DNS names hosted overseas
- Simplify the jurisdictional issues

<table>
<thead>
<tr>
<th>Country</th>
<th>GeoIP</th>
<th>whois</th>
<th>GeoIP ∪ whois</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>79M</td>
<td>75M</td>
<td>97M</td>
</tr>
<tr>
<td>Spain</td>
<td>29M</td>
<td>16M</td>
<td>30M</td>
</tr>
</tbody>
</table>
I need an engineer

Targeting: snipe or mass destruction?

What is a target?

Targeting subdomain *.gouv.fr

Retrieving the reverse whois database

Domain scrapping

What can be done / found on the Internet
Use-case: what is *.gouv.fr

- A national sub-domain
- No specific registrar
- No general DNS
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Targeting subdomain *.gouv.fr

Targeting *.gouv.fr howto

Algorithm

- Find as much domains ending with *.gouv.fr as possible
- For each domain:
 - Get the corresponding IP
 - Get the whois associated to the IP
 - Consider the netrange the IP belongs to

 a. Assumes a hosting company might host several IPs related to *.gouv.fr

Problems / subgoals

- #1: get a whois database, which is a pain to parse
- #2: get domains from Google / Bing / other which do not want to be scrapped
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?
 - What is a target?
 - Targeting subdomain *.gouv.fr
 - Retrieving the reverse whois database
 - Domain scrapping

3. What can be done / found on the Internet
whois issue: build your own reverse whois cache

Accessing whois database

- Formerly available at ipindex.homelinux.net but domain is dead now
- Bulk access to whois data has to be asked for each registrar
 - And you have to send a letter to APNIC (so 2014)

What we just need: reverse whois database

- Goal: for each IP, know to what netblock it belongs to, and who owns this netblock
- Ex.: who owns 42.0.0.0/8, 42.0.0.0/16, 42.0.0.0/24 and any potential subnetwork
Why whois servers are a pain?

whois: back to the future in the 70's

- MANY whois server, each with its output format
- Some servers answers to X.X.X.X, some to X.X.X.X/8 (and of course, not reciprocally)
- Some give inetnum of the higher level, some don't
 - whois 113.11.0.0 ⇒ inetnum: 113.11.0.0 - 113.11.127.255
 - whois 113.11.0.0/16 ⇒ inetnum: 113.0.0.0 - 113.255.255.255
 - whois 113.7.0.0/16 ⇒ inetnum: 113.0.0.0 - 113.7.255.255
 - whois 113.7.0.0 ⇒ inetnum: 113.0.0.0 - 113.7.255.255
WHAT THE FUCK
DID I JUST SEE?
Building the reverse whois database

Algorithm

- Query every /8, /16 and /24
- Query random IP to get a granularity below /24 and aggregate the intervals

Results

- Took 1 day for all /8, /16 and /24
- Much longer for intervals below /24
- Distributed our requests, made them slowly, not to be banned
- Thank you nodescan and libleeloo :)

Retrieving the reverse whois database
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?
 - What is a target?
 - Targeting subdomain *.gouv.fr
 - Retrieving the reverse whois database
 - Domain scrapping

3. What can be done / found on the Internet
Getting domains: the old school way

Algorithm

1. Build a list of keywords: ministere, departement, mairie, finances, ville, loi, convention, confidentiel, ...
2. Query: `site:*\.gouv\.fr <KEYWORD>`
3. Grab all domains you can
4. Got 238 domains from Bing
5. Thank you http://www.tadaweb.com
Document provisoire, ne pas diffuser - Haut Conseil de la ...

www.sante-jeunesse-sports.gouv.fr/IMG/pdf/r_lt_300905_vhb5.pdf

de D ANTONA - Autres articles

RAPPORT DU GROUPE DE TRAVAIL du Conseil supérieur d'hygiène publique de France. Risque de contamination horizontale au sein de collectivité d'...

Guide du bon usage des médias sociaux - Ministère de la ...

à ne pas diffuser. • Éviter les publications, statuts ou commentaires tels que : « Super ! Plus que 11 jours et 2 heures et vous serez à quai et je pourrai enfin te ...
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Domain scrapping

Getting domains (plan B): using the cloud

Wait a second...

- We have a scalable architecture
- We have France == 97M IPs (GeoIP + whois)
- We have libleeloo to distribute these 97M IPs over our probes
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Domain scrapping

Getting domains (plan B): using the cloud

Wait a second...

- We have a scalable architecture
- We have France == 97M IPs (GeoIP + whois)
- We have libleeloo to distribute these 97M IPs over our probes

⇒ Let’s distribute the 97M DNS lookups!!

Results

- Duration: 15h
- Hosts: 5
- Unique domains found: 1342
- Unique IPs: 1295
- Subdomains: 143
- Network size: 7M IPs
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Domain scrapping

Conclusion: targeting *.gouv.fr at cloud age

Finding targets

```python
1  def domains2IP( hostnames, pattern ):  
2      domains = hostnames.grep( pattern ) # 1342 domains  
3      targets = []  
4      for d in domains:  
5          ip = gethostbyaddr( d )  
6          targets += net.add( whois.get_range( ip ) )  
7      return targets
```
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
 - Vulnerability research
 - Scanning Spain
 - Diffing networks
 - Usage monitoring
Plan

1. I need an engineer
2. Targeting: snipe or mass destruction?
3. What can be done / found on the Internet
 - Vulnerability research
 - Scanning Spain
 - Diffing networks
 - Usage monitoring
A quick word about heartbleed

- Many scans looking for vulnerable servers...
- Most of the focus is on 443 port
- Free advice: people should also look at OpenVPN and some other servers
Looking for a backdoor

I’m gonna owned the Internet

- Backdoor discovered (twice :) by Eloi Vanderbeken on some routers
- Listen on TCP port 32764
- No authentication, simple protocol
- Let’s start some recognition...
How to own the Internet

My precious

- Launch masscan on 32764: 30k packets/s
- around 50h later, about 1 million IPs discovered with TCP port 32764 open
- Used nodescan to verify these hosts: checking for backdoor signature as an answer of an invalid request
- By scanning about 6k IPs/s, a few minutes later, about 6000 devices were found vulnerable
Gathering statistics about the backdoor

- Repartition by country

- ES: <1%
- AE: <1%
- BE: <1%
- IE: <1%
- CH: <1%
- NL: <1%
- AT: <1%
- CA: 1.01%
- JP: 1.02%
- ZA: 1.26%
- FR: 1.43%
- DE: 1.57%
- SE: 2.22%
- AU: 2.9%
- KR: 3.37%
- IT: 8.88%
- US: 25.46%
- GB: 39.96%
Gathering statistics about the backdoor

- Repartition by hardware: using the same scanner, a "version" and "sys_desc" field has been grabbed. Manual mapping had to be done (thus the "Unidentified" field).

![Pie chart showing the distribution of hardware types.]

- Netgear DC834: 42.3%
- Netgear WPNT834: 39.4%
- Cisco WAP4410: 7.8%
- Linksys WAC160N: 0.3%
- Unidentified: 10.2%
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet
- Vulnerability research
- Scanning Spain
- Diffing networks
- Usage monitoring
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

#define Spain

What is Spain?

- Country: 30M IPs
- Number of probes: 100
- Number of ports: 30
- Plugins: banners for Telnet & FTP, SSL certificate, SSH key, HTTP (index of, page title, headers, auth), heartbleed, NFS.ls, FTP.ls, MySQL info, hadoop, ...
- Scan duration: 25h
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

What does Internet.es look like?

Scanning Spain

- micro_httpd
- Apache httpd
- Dropbear sshd
- Microsoft Terminal Service
- lighttpd
- OpenSSH
- Allegro RomPager
- Microsoft IIS httpd
- mini_httpd
- MikroTik RouterOS named or OpenDNS Updater
- Microsoft Windows RPC
- MySQL
- Others
Focus on SSH

- Dropbear sshd
- OpenSSH
- MikroTik RouterOS sshd
- Cisco SSH
- Unknown
- Linksys WRT45G modified dropbear sshd
- SCS sshd
- Seagate GoFlex NAS device sshd
- SunSSH
- WeOnlyDo sshd
- Others
I need an engineer
Targeting: snipe or mass destruction?
What can be done / found on the Internet
Scanning Spain

Digging into dropbear

37.152.157.114.txt: OLECOMUNICACION-NET 84.232.91.100.txt: THELLINM-NET
37.61.251.139.txt: NUBBITEL 84.236.239.171.txt: ADSLSERVICES-ADSL-NET
62.81.244.73.txt: INFOTEC_TECNOLOGIA_INTEGRAL_Y_TELEC 87.235.106.48.txt: IPCOM-NET
77.27.81.19.txt: FUNDACIONCULTURALESTRADA-NET 89.140.120.114.txt: INFORMATICA_LIMON
FTP at a glance

- FTP banners: 31959
- `grep -i camera ftps|wc -l` → 216
- `grep -i "DSL router" ftps|wc -l` → 2110
Actually all FTP banners containing MikroTik are unique

LOURDES GARCIA LANDETE FTP server (MikroTik 5.11) ready: 1
Nodo Formentera 2 V + H FTP server (MikroTik 5.25) ready: 1
AYTO_SCOLA_MUSICA FTP server (MikroTik 5.25) ready: 1
Cliente Danubio27 - Francisco Planells FTP server (MikroTik 5.19) ready: 1
M26002512T FTP server (MikroTik 5.22) ready: 1
SJVJCostaRd1 FTP server (MikroTik 5.22) ready: 1
ramon lopez perez FTP server (MikroTik 5.21) ready: 1
Someone is looking at your FTP servers

A long time ago, in a far far away FTP server...

- We noticed a file `w0000000t.{php,txt}` on 115 world-writable FTP servers
  ```
  >> cat w0000000t.txt
  w000000000000000t
  >> cat w0000000t.php
  <?php echo base64_decode("bm9wZW5vcGVub3Bl"); ?>
  ; nopenopenope
  ```

- 104 out of the 115 are Microsoft FTPd
- Google(bm9wZW5vcGVub3Bl) → 2 servers
- Google(w00...000t) → more IPs
- Anyone knows what tool lets this signature?
3M Filtrete 3M-50 thermostat: thermostat with WiFi control... on the Internet

http://www.radiothermostat.com/filtrete/products/3M-50/

Long tail of Internet.es (a.k.a. wtf.es)
Long tail of Internet.es (a.k.a. wtf.es)

- merten@home: remote for everything at home
Long tail of Internet.es (a.k.a. wtf.es)

- merten@home: awarded in 2004 and 2006!!
Long tail of Internet.es (a.k.a. wtf.es)

- Moxa NPort 5410: serial to IP converter for PLC, industrial systems, ...
Cameras of course: Axis
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
 - Vulnerability research
 - Scanning Spain
 - Diffing networks
 - Usage monitoring
Diffing networks

Monitoring == diffing

REPORTS DIFFERENCES

Base report

<table>
<thead>
<tr>
<th>Name</th>
<th>Creation Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>top 100</td>
<td>Dec 12, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Dec 5, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Nov 21, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Nov 7, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Oct 31, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Oct 24, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Oct 7, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Sep 30, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Sep 27, 2013</td>
<td></td>
</tr>
</tbody>
</table>

Compare against

<table>
<thead>
<tr>
<th>Name</th>
<th>Creation Date</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>top 100</td>
<td>Dec 12, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Dec 5, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Nov 21, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Nov 7, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Oct 31, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Oct 24, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Oct 7, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Sep 30, 2013</td>
<td></td>
</tr>
<tr>
<td>top 100</td>
<td>Sep 27, 2013</td>
<td></td>
</tr>
</tbody>
</table>

Targeting: snipe or mass destruction?

What can be done / found on the Internet
Plan

1. I need an engineer

2. Targeting: snipe or mass destruction?

3. What can be done / found on the Internet
 - Vulnerability research
 - Scanning Spain
 - Diffing networks
 - Usage monitoring
PayTV Internet Sharing

CCcam

- One host (master) shares a card with several clients
- When one client receives an encrypted payload, it is sent to the master
- The master deciphers the payload, sends it back to the client
- Very lucrative business

Usage statistics

- Scan a few ports, the usual ones where CCcam is running
- Connect to the server to get plenty of information
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Piracy monitoring

Usage monitoring
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Usage monitoring

Piracy monitoring
I need an engineer

Targeting: snipe or mass destruction?

What can be done / found on the Internet

Usage monitoring

Piracy monitoring

Evolution by country
Graph built on 27/03/2014
Conclusion

Port scan is not for pussies anymore at the cloud age

- Port scan is not only about the port scanner itself
 - **Scalability**: distribution of the task
 - **Big Data**: unstructured data with a lot of inserts, need for indexation
- **Admin**: sending automatically emails to abuse@... is free, but you should have more serious things to deal with that port scans in 2014
- **Legal**: no idea if it is legal or not, but if it is not, it just helps the bad guys, so it is stupid
Conclusion

What massive port scan is good for?

- Security is not about patching anymore
- Try to prevent the attack (ID, PS, exploit mitigation, AV, ...)
- Assume the attack will succeed anyway :(
 ⇒ Need to know what / where your assets are
 - To elaborate your defensive strategy
 - To elaborate your recovery plan
Questions?
Challenge accepted: klapspaan

www.quarkslab.com
contact@quarkslab.com | @quarkslab.com