
Tales from iOS 6 Exploitation
and iOS 7 Security Changes
Stefan Esser <stefan.esser@sektioneins.de>

http://www.sektioneins.de

mailto:stefan.esser@sektioneins.de
mailto:stefan.esser@sektioneins.de
http://www.sektioneins.de
http://www.sektioneins.de

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• PHP core developer since 2001

• Month of PHP Bugs and Suhosin

• recently focused on iPhone security (ASLR, kernel, jailbreak)

• Head of Research and Development at SektionEins GmbH

2

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

What is this talk about?

• the posix_spawn() vulnerability

• and how it turned out to be more than an information leak

• various iOS 7 changes with an influence on security

3

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Part I

posix_spawn() - The info leak that was more...

4

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

posix_spawn() and the SyScan Garage Sale

• bunch of vulnerabilities were dropped at
SyScan Singapore 2013

• the posix_spawn() vulnerability was one of them

• posix_spawn() is a more powerful way to spawn/execute processes

• vulnerability was declared a kernel heap information leak

5

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

posix_spawn() File Actions

• file actions allow parent to open, close or clone file descriptors for the child

• each action is defined in a structure about 1040 bytes in size

• prefixed by a small header

6

typedef struct _psfa_action {
 psfa_t psfaa_type; /* file action type */
 int psfaa_filedes; /* fd to operate on */
 struct _psfaa_open {
 int psfao_oflag; /* open flags to use */
 mode_t psfao_mode; /* mode for open */
 char psfao_path[PATH_MAX]; /* path to open */
 } psfaa_openargs;
} _psfa_action_t;

typedef enum {
 PSFA_OPEN = 0,
 PSFA_CLOSE = 1,
 PSFA_DUP2 = 2,
 PSFA_INHERIT = 3
} psfa_t;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

posix_spawn() File Actions

• data describing the actions is copied into the kernel after user supplied size is
checked against upper and lower bounds

7

if (px_args.file_actions_size != 0) {
 /* Limit file_actions to allowed number of open files */
 int maxfa = (p->p_limit ? p->p_rlimit[RLIMIT_NOFILE].rlim_cur : NOFILE);
 if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||
 px_args.file_actions_size > PSF_ACTIONS_SIZE(maxfa)) {
 error = EINVAL;
 goto bad;
 }
 MALLOC(px_sfap, _posix_spawn_file_actions_t, px_args.file_actions_size, M_TEMP, M_WAITOK);
 if (px_sfap == NULL) {
 error = ENOMEM;
 goto bad;
 }
 imgp->ip_px_sfa = px_sfap;

 if ((error = copyin(px_args.file_actions, px_sfap,
 px_args.file_actions_size)) != 0)
 goto bad;
}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

posix_spawn() File Actions Incomplete Verification

• check against upper and lower bound is insufficient

• because of a file action count inside the data that is trusted

• it is never validated that the supplied data is enough for the count

• loop over data can therefore read outside the buffer which might crash

8

static int
exec_handle_file_actions(struct image_params *imgp, short psa_flags)
{
 int error = 0;
 int action;
 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
 _posix_spawn_file_actions_t px_sfap = imgp->ip_px_sfa;
 int ival[2]; /* dummy retval for system calls) */

 for (action = 0; action < px_sfap->psfa_act_count; action++) {
 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];

 switch(psfa->psfaa_type) {
 case PSFA_OPEN: {

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

posix_spawn() File Actions Information Leak

• by carefully crafting the data (and its size) it is possible to leak bytes from the
kernel heap with a PSFA_OPEN file action

• choose size in a way that the beginning of the filename is from within the
buffer and the end of the filename is taken from the kernel heap after it

• with fcntl(F_GETPATH) it is then possible to retrieve the leaked bytes

9

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Only an Information Leak?

10

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Only an information leak?

• questions came up on Twitter if posix_spawn is more than an information leak

• to be more than an information leak we need a write outside the buffer

• we need to check if there is any write in exec_handle_file_actions() function

• and if we can abuse it

• let‘s read more carefully ...

11

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Structure of exec_handle_file_actions

• function consists of two loops

• with an error condition exit in-between

• both loops implement a switch statement for the cases

• PSFA_OPEN

• PSFA_DUP2

• PSFA_CLOSE

• PSFA_INHERIT

• let‘s check all cases ...

12

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

PSFA_OPEN (I)

• no write in first part of PSFA_OPEN in first loop

13

 case PSFA_OPEN: {
 /*
 * Open is different, in that it requires the use of
 * a path argument, which is normally copied in from
 * user space; because of this, we have to support an
 * open from kernel space that passes an address space
 * context of UIO_SYSSPACE, and casts the address
 * argument to a user_addr_t.
 */
 struct vnode_attr va;
 struct nameidata nd;
 int mode = psfa->psfaa_openargs.psfao_mode;
 struct dup2_args dup2a;
 struct close_nocancel_args ca;
 int origfd;

 VATTR_INIT(&va);
 /* Mask off all but regular access permissions */
 mode = ((mode &~ p->p_fd->fd_cmask) & ALLPERMS) & ~S_ISTXT;
 VATTR_SET(&va, va_mode, mode & ACCESSPERMS);

 NDINIT(&nd, LOOKUP, OP_OPEN, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,
 CAST_USER_ADDR_T(psfa->psfaa_openargs.psfao_path),
 imgp->ip_vfs_context);

 error = open1(imgp->ip_vfs_context,
 &nd,
 psfa->psfaa_openargs.psfao_oflag,
 &va,
 ival);

 }

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

PSFA_OPEN (II)

• no write in second part of PSFA_OPEN in first loop

14

 if (error || ival[0] == psfa->psfaa_filedes)
 break;

 origfd = ival[0];
 /*
 * If we didn't fall out from an error, we ended up
 * with the wrong fd; so now we've got to try to dup2
 * it to the right one.
 */
 dup2a.from = origfd;
 dup2a.to = psfa->psfaa_filedes;

 /*
 * The dup2() system call implementation sets
 * ival to newfd in the success case, but we
 * can ignore that, since if we didn't get the
 * fd we wanted, the error will stop us.
 */
 error = dup2(p, &dup2a, ival);
 if (error)
 break;

 /*
 * Finally, close the original fd.
 */
 ca.fd = origfd;

 error = close_nocancel(p, &ca, ival);
 }
 break;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

PSFA_DUP2 (III)

• no write in PSFA_DUP2 in first loop

15

 case PSFA_DUP2: {
 struct dup2_args dup2a;

 dup2a.from = psfa->psfaa_filedes;
 dup2a.to = psfa->psfaa_openargs.psfao_oflag;

 /*
 * The dup2() system call implementation sets
 * ival to newfd in the success case, but we
 * can ignore that, since if we didn't get the
 * fd we wanted, the error will stop us.
 */
 error = dup2(p, &dup2a, ival);
 }
 break;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

PSFA_CLOSE

• no write in PSFA_CLOSE in first loop

16

 case PSFA_CLOSE: {
 struct close_nocancel_args ca;

 ca.fd = psfa->psfaa_filedes;

 error = close_nocancel(p, &ca, ival);
 }
 break;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

PSFA_INHERIT

• we found a write in PSFA_INHERIT

• but can we make it write outside of our or another buffer?

17

 case PSFA_INHERIT: {
 struct fileproc *fp;
 int fd = psfa->psfaa_filedes;

 /*
 * Check to see if the descriptor exists, and
 * ensure it's -not- marked as close-on-exec.
 * [Less code than the equivalent F_GETFD/F_SETFD.]
 */
 proc_fdlock(p);
 if ((error = fp_lookup(p, fd, &fp, 1)) == 0) {
 *fdflags(p, fd) &= ~UF_EXCLOSE;
 (void) fp_drop(p, fd, fp, 1);
 }
 proc_fdunlock(p);
 }
 break;

This is a write
in form of a
binary AND

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

What is the macro fdflags()?

• fdflags addresses an element in the current processes‘ fd_ofileflags structure

• write position depends on supplied file descriptor fd

• we need to check what and how big fd_ofileflags is

• then we can see if we can make it write outside that buffer

18

#define fdflags(p, fd) \
 (&(p)->p_fd->fd_ofileflags[(fd)])

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

The filedesc struct

• fd_ofileflags is actually a byte array

• now we check where it points to our how it is allocated

19

struct filedesc {
 struct fileproc **fd_ofiles; /* file structures for open files */
 char *fd_ofileflags; /* per-process open file flags */
 struct vnode *fd_cdir; /* current directory */
 struct vnode *fd_rdir; /* root directory */
 int fd_nfiles; /* number of open files allocated */
 int fd_lastfile; /* high-water mark of fd_ofiles */
 int fd_freefile; /* approx. next free file */
 u_short fd_cmask; /* mask for file creation */
 uint32_t fd_refcnt; /* reference count */

 int fd_knlistsize; /* size of knlist */
 struct klist *fd_knlist; /* list of attached knotes */
 u_long fd_knhashmask; /* size of knhash */
 struct klist *fd_knhash; /* hash table for attached knotes */
 int fd_flags;
};

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Where does fd_ofileflags come from?

• fd_ofileflags is actually not the start of an allocated memory block

• first allocation of fd_ofiles as 5 bytes times current max file descriptor

• then fd_ofileflags set to point to the last „current max file descriptor“ bytes

20

 MALLOC_ZONE(newofiles, struct fileproc **,
 numfiles * OFILESIZE, M_OFILETABL, M_WAITOK);
 proc_fdlock(p);
 if (newofiles == NULL) {
 return (ENOMEM);
 }
 if (fdp->fd_nfiles >= numfiles) {
 FREE_ZONE(newofiles, numfiles * OFILESIZE, M_OFILETABL);
 continue;
 }
 newofileflags = (char *) &newofiles[numfiles];

 ...

 ofiles = fdp->fd_ofiles;
 fdp->fd_ofiles = newofiles;
 fdp->fd_ofileflags = newofileflags;
 fdp->fd_nfiles = numfiles;
 FREE_ZONE(ofiles, oldnfiles * OFILESIZE, M_OFILETABL);

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

What do we know so far?

• fd_ofileflags is not start of a buffer but points into the middle of one

• buffer it points to is allocated with MALLOC_ZONE()

• in case of dynamic buffers MALLOC_ZONE() is identical to kalloc()

• and finally the length of fd_ofileflags is „current max filedescriptors“ bytes

• to write outside of that buffer we need to pass illegal file descriptor to fdflags

21

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

PSFA_INHERIT and illegal file descriptors?

• in PSFA_INHERIT passed fd is verified by fp_loopkup

• so we cannot pass an illegal fd to fdflags here

22

 case PSFA_INHERIT: {
 struct fileproc *fp;
 int fd = psfa->psfaa_filedes;

 /*
 * Check to see if the descriptor exists, and
 * ensure it's -not- marked as close-on-exec.
 * [Less code than the equivalent F_GETFD/F_SETFD.]
 */
 proc_fdlock(p);
 if ((error = fp_lookup(p, fd, &fp, 1)) == 0) {
 *fdflags(p, fd) &= ~UF_EXCLOSE;
 (void) fp_drop(p, fd, fp, 1);
 }
 proc_fdunlock(p);
 }
 break;

fp_lookup
will ensure
only valid
fd pass

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

 proc_fdlock(p);
 for (action = 0; action < px_sfap->psfa_act_count; action++) {
 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
 int fd = psfa->psfaa_filedes;

 switch (psfa->psfaa_type) {
 case PSFA_DUP2:
 fd = psfa->psfaa_openargs.psfao_oflag;
 /*FALLTHROUGH*/
 case PSFA_OPEN:
 case PSFA_INHERIT:
 *fdflags(p, fd) |= UF_INHERIT;
 break;

 case PSFA_CLOSE:
 break;
 }
 }
 proc_fdunlock(p);

Is there a write in the second loop?

• second loop also contains an fdflags write (binary OR)

• and fd is either filled from psfaa_filedes or psfaa_openargs.psfao_oflag

• both these variables are checked to only contain valid fd in first loop

23

another
potential

write

both
validated
in loop 1

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Vulnerable or Not?

• so is this code vulnerable or not?

• in both cases the file descriptors passed to fdflags are verified

• ... but can you spot an important difference in both verifications?

24

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Write One

• for write one the fd is read from memory

• then verified

• and then used for the write

25

 case PSFA_INHERIT: {
 struct fileproc *fp;
 int fd = psfa->psfaa_filedes;

 /*
 * Check to see if the descriptor exists, and
 * ensure it's -not- marked as close-on-exec.
 * [Less code than the equivalent F_GETFD/F_SETFD.]
 */
 proc_fdlock(p);
 if ((error = fp_lookup(p, fd, &fp, 1)) == 0) {
 *fdflags(p, fd) &= ~UF_EXCLOSE;
 (void) fp_drop(p, fd, fp, 1);
 }
 proc_fdunlock(p);
 }
 break;

read from
memory

write

verification

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

 proc_fdlock(p);
 for (action = 0; action < px_sfap->psfa_act_count; action++) {
 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
 int fd = psfa->psfaa_filedes;

 switch (psfa->psfaa_type) {
 case PSFA_DUP2:
 fd = psfa->psfaa_openargs.psfao_oflag;
 /*FALLTHROUGH*/
 case PSFA_OPEN:
 case PSFA_INHERIT:
 *fdflags(p, fd) |= UF_INHERIT;
 break;

 case PSFA_CLOSE:
 break;
 }
 }
 proc_fdunlock(p);

Write Two

• in the second loop the used fd is read from memory

• and then used

• no check in second loop because it relies on check of first loop

26

write

read
from

memory

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Difference in Writes: TOCTOU

• the obvious difference between the writes is the TOCTOU
(Time Of Check Time To Use)

• for write two the final re-read is happening AFTER verification

• for write one the read is happening BEFORE verification

27

Write One

READ FROM MEMORY

VERIFICATION

WRITE

Write Two

READ FROM MEMORY

VERIFICATION

...

RE-READ FROM MEMORY

WRITE

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Is difference in TOCTOU a vulnerability here?

• Re-phrasing:
Is it possible for the memory containing the fd to change between TOCTOU?

• Under normal circumstances:
The fd is read from memory only this kernel thread has access to.
It does not change the value in-between so no TOCTOU problem.

• But we are not in a normal situation:
We have a vuln that allows file actions to be read from outside the buffer.
Anything outside buffer can be modified at any time by another kernel thread.

=> this is a TOCTOU / race condition vulnerability

28

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Winning the Race?

29

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Winning the Race?

• the race condition can only be exploited
if we manage to change the memory
between verification and re-read

• so we need a second thread to do the
modification at the right moment

• we need to have good syncing and be fast
enough to change between check in loop
1 and usage in loop 2

• whenever possible we try to slow down
the vulnerable kernel thread to enlarge
the window of opportunity

30

Write Two

READ FROM MEMORY

VERIFICATION

...

RE-READ FROM MEMORY

WRITE

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Slowing down exec_handle_file_actions()?

• slowing down a loop can be done by either

• increasing the iterations of the loop
= increasing number of file actions

• slowing down operations inside the loop
= slowing down open() / dup2() / close()

31

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Increasing number of file actions?

• each file action is 1040 bytes

• file actions are allocated with kalloc()

• so we have either 4kb or 12kb memory

• only space for 3 to 11 file actions

• NOT ENOUGH FOR NOTABLE SLOW DOWN

32

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Slowing down file actions?

• we cannot slow down dup2()

• we cannot slow down close()

• but what about open() ???

33

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Manpage of open()

34

OPEN(2) BSD System Calls Manual OPEN(2)

NAME
 open -- open or create a file for reading or writing

SYNOPSIS
 #include <fcntl.h>

 int
 open(const char *path, int oflag, ...);

DESCRIPTION
 The file name specified by path is opened for reading and/or writing, as specified by the argument
 oflag; the file descriptor is returned to the calling process.

 The oflag argument may indicate that the file is to be created if it does not exist (by specifying
 the O_CREAT flag). In this case, open requires a third argument mode_t mode; the file is created
 with mode mode as described in chmod(2) and modified by the process' umask value (see umask(2)).

 The flags specified are formed by or'ing the following values:

 O_RDONLY open for reading only
 O_WRONLY open for writing only
 O_RDWR open for reading and writing
 O_NONBLOCK do not block on open or for data to become available
 O_APPEND append on each write
 O_CREAT create file if it does not exist
 O_TRUNC truncate size to 0
 O_EXCL error if O_CREAT and the file exists
 O_SHLOCK atomically obtain a shared lock
 O_EXLOCK atomically obtain an exclusive lock
 O_NOFOLLOW do not follow symlinks
 O_SYMLINK allow open of symlinks
 O_EVTONLY descriptor requested for event notifications only
 O_CLOEXEC mark as close-on-exec

open supports
file locking

if we open already
locked file

posix_spawn will
sleep until lock is released

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Winning the Race !!!

• turns out that the race condition is easy
to win 100% of the time

• just need to sync with a secondary
thread via file locking

35

Write Two

READ FROM MEMORY

VERIFICATION

...
OPEN LOCKED FILE
...

RE-READ FROM MEMORY

WRITE

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

File Locking Sync

36

Thread 1

OPEN FILE A (O_EXLOCK)

POSIX_SPAWN

File Action 1
SOME ACTION

File Action 2
CLOSE FILE A (LOCK RELEASE)

... wait for unlock of file B ...

... wait for unlock of file B ...

... wait for unlock of file B ...

File Action 3
OPEN FILE B (O_EXLOCK)

Thread 2

OPEN FILE B (O_EXLOCK)

OPEN FILE A (O_EXLOCK)
... wait for unlock of file A ...
... wait for unlock of file A ...
... wait for unlock of file A ...
... wait for unlock of file A ...

MODIFICATION OF MEMORY
OF FILE ACTION 2

CLOSE FILE B (LOCK RELEASE)

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

At this point we have the following

• winning the race is easy with
3 file actions, 2 file locks
and 2 threads

• we need to deal with kalloc.1536
or bigger

• most of file action 2 and
whole file action 3 outside of buffer

• requires already Heap-Feng-Shui
to achieve this

37

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

How to control the write?

38

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

How to control the write?

• the write is a BINARY OR against UF_INHERIT = 0x20

• we can only set bit 5 in some byte anywhere in memory

• write is relative to fd_ofileflags

• PROBLEM: where is fd_ofileflags?

39

*fdflags(p, fd) |= UF_INHERIT;

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Where is fd_ofileflags?

• fd_ofileflags is allocated after process is started

• and we have no idea where it is

• to find out the address of fd_ofileflags we require some information leak

• we have no information leak that gives us its address :-(

• so we have to abuse the relative write to create a man-made information leak

40

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Force fd_ofileflags relocation (I)

• fd_ofileflags is allocated in an
unknown position

• to abuse the relative write we need
to be at least able to relocate it

• reallocation happens in fdalloc()
when all file descriptors are
exhausted

• by default we start with a limit
of 256 allowed file descriptors

41

int fdalloc(proc_t p, int want, int *result)
{
 ...
 lim = min((int)p->p_rlimit[RLIMIT_NOFILE].rlim_cur, maxfiles);
 for (;;) {
 ...

 /*
 * No space in current array. Expand?
 */
 if (fdp->fd_nfiles >= lim)
 return (EMFILE);
 if (fdp->fd_nfiles < NDEXTENT)
 numfiles = NDEXTENT;
 else
 numfiles = 2 * fdp->fd_nfiles;
 /* Enforce lim */
 if (numfiles > lim)
 numfiles = lim;
 proc_fdunlock(p);
 MALLOC_ZONE(newofiles, struct fileproc **,
 numfiles * OFILESIZE, M_OFILETABL, M_WAITOK);
 proc_fdlock(p);
 if (newofiles == NULL) {
 return (ENOMEM);
 }
 ...
 newofileflags = (char *) &newofiles[numfiles];

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Force fd_ofileflags relocation (II)

• forcing a fd_ofileflags reallocation comes down to

• raising the limit for openable files with setrlimit(RLIMIT_NOFILE) to 257

• using dup2() to force use of highest allowed file descriptor

• memory allocation will be for 5 * 257 = 1285

• reallocated fd_ofileflags ends up in the kalloc.1536 zone

42

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Relocated... What now?

• re-allocation allows to put fd_ofileflags into a relative position to other blocks

• heap-feng-shui in kalloc.1536 zone required

• so what can we do with our relative binary-or of 0x20?

• use Azimuth‘s vm_map_copy_t self locating technique

43

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be
behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of
size field of first vm_map_copy_t

• now receive the first message to
information leak the content behind

• discloses the 2nd vm_map_copy_t
including its address

• and also the content of the fd_ofileflags
structure

44

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be
behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of
size field of first vm_map_copy_t

• now receive the first message to
information leak the content behind

• discloses the 2nd vm_map_copy_t
including its address

• and also the content of the fd_ofileflags
structure

45

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be
behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of
size field of first vm_map_copy_t

• now receive the first message to
information leak the content behind

• discloses the 2nd vm_map_copy_t
including its address

• and also the content of the fd_ofileflags
structure

46

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be
behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of
size field of first vm_map_copy_t

• now receive the first message to
information leak the content behind

• discloses the 2nd vm_map_copy_t
including its address

• and also the content of the fd_ofileflags
structure

47

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Self-Locating with vm_map_copy_t

• need to relocate fd_ofileflags to be
behind two vm_map_copy_t structures

• use relative write to increase 2nd byte of
size field of first vm_map_copy_t

• now receive the first message to
information leak the content behind

• discloses the 2nd vm_map_copy_t
including its address

• and also the content of the fd_ofileflags
structure

48

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

What we have so far ...

• fill the kalloc.1536 zone via vm_map_copy_t (OOL mach_msg)

• peek a hole and trigger fd_ofileflags relocation into it (setrlimit + dup2)

• poke two more holes (H1 followed by H2) and
re-fill H2 with our initial file actions 2+3 (close A+open B) (OOL mach msg)

• do posix_spawn

• when it releases file A and waits for file B let other thread modify memory

• ...

49

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

What we have so far ...

• ...

• second thread pokes a hole at H2 and re-fill it with new file actions

• file action 2 is changed from PSFA_CLOSE to PSFA_DUP2

• fd of file action 2 is set to relative position of size field of the first
vm_map_copy_t structure

• second thread closes file B to wake-up posix_spawn

• after posix_spawn has returned with an error receive the first mach message

=> from leaked data we now know the address of fd_ofileflags

50

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Now write where?

51

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Now write where?

• we now have the address of fd_ofileflags

• further writes can be anywhere in memory

• what to overwrite to control code execution?

=> many possibilities

=> we go after the size field of a data object to create a buffer overflow

52

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Data Objects to Overflows...

• we have to solve the following problems

• how to create a data object to overwrite

• how to get its address so that we know where to write

• and finally destroying the data object to trigger kfree into wrong zone

53

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Creating Data and Leaking its Address

• creating data objects is easy with OSUnserializeXML()

• we can do this via io_service_open_extended() and properties

• leaking is also easy in our situation

• we put the data object and 256 references to it into an array

• array bucket will be allocated into the kalloc.1536 zone

• we can do this in parallel to the vm_map_copy_t self-locating and leak the
content of the array bucket at the same time

=> this gives us the data object address

54

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Overwriting and Destroying the Data Object

• we now have to do the posix_spawn() attack again with the
data object‘s capacity field as target

• we can then free the data object by closing the driver
connection again

=> this will free the data buffer into the wrong zone
=> next allocation in that zone will give back a too short buffer
=> we can send a OOL mach_msg to trigger that overflow

55

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

What to overflow into...

• now we can create a heap buffer overflow out of posix_spawn()

• we need a target to overflow into

• again we have a multitude of options

• some examples:

• overflow an IOUserClient created by a driver connection for code exec

• overflow into a vm_map_copy_t for arbitrary information leaks

• ...

56

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Overflowing into vm_map_copy_t

• by overflowing into a vm_map_copy_t structure we can

• read “any amount“ of bytes from anywhere in kernel into user space

• just need to setup a fake vm_map_copy_t header

• and then receive the message

57

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Overflowing into a driver connection

• by overflowing into a IOUserClient object instance we can

• replace the vtable with a list of our own methods

• set the retainCount to a high value to not cause problems

=> but what to overwrite the vtable with?

58

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Vtable where are thou?

• our fake vtable is a list of pointers that we just need to put into memory

• we can put it into kernel memory by sending a mach_msg

• we best use the kalloc.1536 target zone

• cause enough space for a long vtable

• and we already know address of blocks in a relative position to it

59

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Vtable to Pwnage

60

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Vtable to Pwnage (I)

• at this point we have to select the addresses our vtable should point to

• for this we need to know the current address of the kernel

• and the content of the kernel

• we can use any KASLR information leak for getting the kernel base address
or just leak the vtable of an object via the vm_map_copy_t technique

• the second we can also get by overflowing into vm_map_copy_t instead of a
user client object

61

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Vtable to Pwnage (II)

• from here it is easiest to go after IOUserClient external traps

• they can be called from mach_trap 100 iokit_user_client_trap

• allows to call arbitrary functions with arbitrary parameters in the kernel

62

kern_return_t iokit_user_client_trap(struct iokit_user_client_trap_args *args)
{
 kern_return_t result = kIOReturnBadArgument;
 IOUserClient *userClient;

 if ((userClient = OSDynamicCast(IOUserClient,
 iokit_lookup_connect_ref_current_task((OSObject *)(args->userClientRef))))) {
 IOExternalTrap *trap;
 IOService *target = NULL;

 trap = userClient->getTargetAndTrapForIndex(&target, args->index);

 if (trap && target) {
 IOTrap func;

 func = trap->func;

 if (func) {
 result = (target->*func)(args->p1, args->p2, args->p3, args->p4, args->p5, args->p6);
 }
 }
 userClient->release();
 }
 return result;
}

fake vtable
needs to

implement this

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Vtable to Pwnage (III)

• default implementation in IOUserClient does call getExternalTrapForIndex()

• its default is returning NULL

• we should only overwrite getExternalTrapForIndex()

63

IOExternalTrap * IOUserClient::
getExternalTrapForIndex(UInt32 index)
{
 return NULL;
}

IOExternalTrap * IOUserClient::
getTargetAndTrapForIndex(IOService ** targetP, UInt32 index)
{
 IOExternalTrap *trap = getExternalTrapForIndex(index);

 if (trap) {
 *targetP = trap->object;
 }

 return trap;
}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Vtable to Pwnage (IV)

• in our vtable we set getTargetAndTrapForIndex to the original
IOUserClient::getTargetAndTrapForIndex

• and we set getExternalTrapForIndex() to a gadget that
performs the below (e.g. MOV R0, R1; BX LR)

64

IOExternalTrap * IOUserClient::
OUR_FAKE_getExternalTrapForIndex(void *index)
{
 return index;
}

IOExternalTrap * IOUserClient::
getTargetAndTrapForIndex(IOService ** targetP, UInt32 index)
{
 IOExternalTrap *trap = getExternalTrapForIndex(index);

 if (trap) {
 *targetP = trap->object;
 }

 return trap;
}

index from
user space

will be used
as kernel pointer
to IOExternalTrap

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

From Vtable to Pwnage (V)

• by setting the „index“ argument of iokit_user_client_trap to our buffer

• we can call any function in the kernel with up to 7 parameters

65

kern_return_t iokit_user_client_trap(struct iokit_user_client_trap_args *args)
{
 kern_return_t result = kIOReturnBadArgument;
 IOUserClient *userClient;

 if ((userClient = OSDynamicCast(IOUserClient,
 iokit_lookup_connect_ref_current_task((OSObject *)(args->userClientRef))))) {
 IOExternalTrap *trap;
 IOService *target = NULL;

 trap = userClient->getTargetAndTrapForIndex(&target, args->index);

 if (trap && target) {
 IOTrap func;

 func = trap->func;

 if (func) {
 result = (target->*func)(args->p1, args->p2, args->p3, args->p4, args->p5, args->p6);
 }
 }
 userClient->release();
 }
 return result;
}

we can
call everything

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Part II

iOS 7 Security Changes

66

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

System Call Table Hardening (Structure)

• in previous versions of iOS Apple has protected the table by

• removing symbols

• moving variables like the system call number around

• this was done to protect against easy detection in memory / in the binary

• in iOS 7 they went a step further and changed the actual structure of the
system call table entries

➡ unknown if Apple did this a security protection but it makes all public
detectors fail

67

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

System Call Table Hardening (Access)

• in iOS 6 Apple has moved system call table into __DATA::__const

• this section is read-only at runtime

• protects system call table from overwrites

• but the code would access table via a writable pointer in __nl_symbol_ptr

• iOS 7 fixes this by using PC relative addressing when accessing _sysent

68

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

System Call Table Hardening (Variables)

• potential attack has always been tampering with the nsys variable

• overwriting this allowed referencing memory outside the table

• executing illegal syscalls would have resulted in execution hijack

• iOS 7 fixes this by removing access to the nsys variable

• maximum number of system calls is now hardcoded into the code

69

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Sandbox Hardening

• requires more research

• but filesystem access has been locked down once more

• application containers can access fewer files in the filesystem

• example iOS 7 disallows access to /bin and /sbin

• applications can no longer steal e.g. launchd from /sbin/launchd

70

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Read-Only Root Filesystem Enforcement

• iOS 7 introduces a “security“ check into the mount() systemcall

• attempt to load the root filesystem as readable-writable results in EPERM

• mounting the root fs as readable-writable now requires kernel trickery

• /etc/fstab trickery no longer enough

71

 if ((vp->v_flag & VROOT) &&
 (vp->v_mount->mnt_flag & MNT_ROOTFS)) {

 flags &= ~MNT_UPDATE;
 if (!(flags & MNT_UNION)) {
 flags |= MNT_UPDATE;
 }

 if (!(flags & MNT_RDONLY)) {
 error = EPERM;
 goto out;
 }
 }

 error = mount_common(fstypename, pvp, vp, &nd.ni_cnd, uap->data, flags, 0,
 labelstr, FALSE, ctx);
out:

read only mount
results in EPERM

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Juice Jacking

• attack vector known for years

• iOS devices vulnerable to malicious USB ports
(e.g. charger)

• malicious USB port can pair with device and use
features like backup, file transfer or activate
developer mode

• in developer mode malware upload is trivial

• largely ignored until BlackHat + US media hyped it

• iOS 7 adds a popup menu as countermeasure

72

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

LaunchDaemon Security

• Apple added code signing for launch daemons in iOS 6.1

• but Apple forgot / or ignored /etc/launchd.conf

• /etc/launchd.conf defines commands launchctl executes on start

• jailbreaks like evasi0n abused this to execute arbitrary existing commands

• in iOS 7 Apple removed usage of this file

73

 bsexec .. /sbin/mount -u -o rw,suid,dev /
 setenv DYLD_INSERT_LIBRARIES /private/var/evasi0n/amfi.dylib
 load /System/Library/LaunchDaemons/com.apple.MobileFileIntegrity.plist
 bsexec .. /private/var/evasi0n/evasi0n
 unsetenv DYLD_INSERT_LIBRARIES
 bsexec .. /bin/rm -f /private/var/evasi0n/sock
 bsexec .. /bin/ln -f /var/tmp/launchd/sock /private/var/evasi0n/sock

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Partial Code Signing Hardening

• many jailbreaks used partial code signing vulnerabilities for persistence

• basically all those exploited the dynamic linker dyld

• with iOS 7 Apple has added a new function called crashIfInvalidCodeSignature

• function touches all segments to cause crashes if invalid signature is provided

74

int __fastcall ImageLoaderMachO::crashIfInvalidCodeSignature(int a1)
{
 int v1; // r4@1
 int result; // r0@1
 unsigned int v3; // r5@2

 v1 = a1;
 result = 0;
 if (*(_BYTE *)(v1 + 72))
 {
 v3 = 0;
 while ((*(int (__fastcall **)(int, unsigned int))(*(_DWORD *)v1 + 208))(v1, v3)
 || !(*(int (__fastcall **)(int, unsigned int))(*(_DWORD *)v1 + 200))(v1, v3))
 {
 ++v3;
 result = 0;
 if (v3 >= *(_BYTE *)(v1 + 72))
 return result;
 }
 result = *(_DWORD *)(*(int (__fastcall **)(int, unsigned int))(*(_DWORD *)v1 + 236))(v1, v3);
 }
 return result;
}

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Library Randomization

• iOS 6 slid the dynamic shared cache between 0x30000000 - 0x3FFFFFFF

• in this 256MB window 21500 different base addresses possible (iPod 4G)

• new devices = more code = less random

• iOS 7 now slides between 0x2C000000 - 0x3FFFFFFF adds 2^13 entropy

75

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Library Randomization (64 bit)

• iPhone 5S and its 64 bit address space allows for better randomization

• separate 64 bit shared cache file
/System/Library/Caches/com.apple.dyld/dyld_shared_cache_arm64

• dynamic shared cache loaded between 0x180000000 - 0x19FFFFFFF

• finally fixes the cache overlap vulnerability

76

Stefan Esser • Tales from iOS 6 Exploitation and iOS 7 Security Changes • October 2013 •

Questions

?
77

