
SHAttered Dreams	

Adventures in BootROM Land	

By Joshua Hill	

(@p0sixninja)	

Disclaimer	

• Nothing in this talk should imply that I was

responsible these BootROM exploits.	

•  Special thanks to my wonderful friend
@pod2g for staying up late at night and
arguing with me over why things were
crashing.	

•  This is not my story, this is our story. You
should be up here on stage with me now.	

Introduction	

• Who am I?	

• What have I done?	

• What’s going to be covered?	

Who am I?	

•  Joshua Hill (@p0sixninja)	

•  Experienced iOS Jailbreaker	

•  Self-taught Developer and Hacker	

Accomplishments	

• Worked with Chronic-Dev Team for 4
years. Currently independent researcher.	

•  Chief Architect behind the GreenPois0n
and Absinthe jailbreaks.	

•  Been reversing iOS BootROM since 2008.	

•  Stole these slides from other presentations.	

Agenda	

• What is a BootROM	

•  How to dump BootROM	

•  BootROM walk-through	

•  Past BootROM exploits	

•  Exploitation methods	

Terminology	

•  SROM - SecureROM	

•  SRAM - SecureRAM	

• MMIO - Memory Mapped I/O	

• MIU - Memory Interface Unit	

• MMU - Memory Management Unit	

•  DFU - Device Firmware Update	

Terminology (cont.)	

•  BSS - Incorrect term we used to describe

the DATA section.	

•  SHSH - Secure Hash used for image
validation	

•  LLB - Low Level Bootloader	

•  IRQ - Interrupt Request	

•  VIC - Vector Interrupt Controller	

What is ���
BootROM	

•  Boot-up Procedure	

• Memory Mappings	

•  Device Changes	

Boot-up Procedures	

•  Automatically mapped at 0x0 when
powered on.	

•  Allocates a small section of SRAM for
dynamic data.	

•  Chooses boot method or defaults back to
DFU mode.	

Memory Mappings	

Device Changes	

•  Address of SRAM has changed over the
years but always same address as LLB and
iBSS.	

•  iPod2g was 0x22000000, A4 chips was
0x84000000	

•  Size of load address changed from 0x24000
bytes to 0x2C000 bytes after A4	

How to Dump
BootROM	

•  Dump from iBoot.	

•  Dump from Kernel.	

•  Exposing with MIU.	

Dumping From���
Physical Memory	

•  This technique first discovered by @pod2g
to dump BootROM from iBoot.	

• No clue why it was worked at the time.	

•  Discovered later BootROM was actually
remapping itself for some reason.	

BootROM Randomly
Remapping Itself	

ROM:000044FE 01C MOVS R1, 0xBF000000!
ROM:00004502 01C MOVS R0, R1!
ROM:00004504 01C MOVS R2, #1!
ROM:00004506 01C MOVS R3, #1!
ROM:00004508 01C STR R6, [SP,#0x1C+var_1C]!
ROM:0000450A 01C STR R4, [SP,#0x1C+var_18]!
ROM:0000450C 01C BL mmu_map_addr!

Dumping from iBoot���
With Cyanide	

> hexdump 0xBF000200 0x40!
0xbf000200: 53 65 63 75 72 65 52 4f 4d 20 66 6f 72 20 73 35 SecureROM for s5 !
0xbf000210: 6c 38 39 33 30 78 73 69 2c 20 43 6f 70 79 72 69 l8930xsi, Copyri !
0xbf000220: 67 68 74 20 32 30 30 39 2c 20 41 70 70 6c 65 20 ght 2009, Apple !
0xbf000230: 49 6e 63 2e 00 00 00 00 00 00 00 00 00 00 00 00 Inc.............!
	

Dumping From Kernel
Payload	

void hook() {!
!IOLog("p0sixninja is in da house!!\n");!
!void* mem = IOMemoryDescriptor(0xBF000200, 0x40, 3);!
!IOLog("mem = 0x%08x\n", mem);!
!void* map = IOMemoryDescriptor_map(mem, 3);!
!IOLog("map = 0x%08x\n", map);!
!unsigned int* va = IOMemoryMap_getVirtualAddress(map);!
!IOLog("va = 0x%08x\n", va);!
!IOHexdump(va, 0x40);!

}!
	

Output From Kernel
Payload	

p0sixninja is in da house!!!
mem = 0x89878930!
map = 0x895a95d8!
va = 0xd3e0b200!
0xd3e0b200: 53 65 63 75 72 65 52 4f 4d 20 66 6f 72 20 73 35 SecureROM for s5!
0xd3e0b210: 6c 38 39 33 30 78 73 69 2c 20 43 6f 70 79 72 69 l8930xsi, Copyri!
0xd3e0b220: 67 68 74 20 32 30 30 39 2c 20 41 70 70 6c 65 20 ght 2009, Apple !
0xd3e0b230: 49 6e 63 2e 00 00 00 00 00 00 00 00 00 00 00 00 Inc.............!
	

Exposing via MIU	

•  Trick discovered by @planetbeing I believe.	

•  By changing the value of MIU register in
ARM-IO MMIO BootROM would magically
appear back at 0x0.	

•  This allowed the first BootROM to be
dumped.	

BootROM Dumper	

•  Created by @pod2g using the SHAtter
BootROM exploit.	

•  Place device in DFU mode and just let it
run.	

•  https://github.com/Chronic-‐Dev/Bootrom-‐Dumper	

A5 BootROM	

• None of these tricks appear to work on A5
processor anymore.	

•  This would be the first step to exploiting
any crashes discovered in new BootROM.	

•  Any hardware guys out there wanna take a
stab at it?	

BootROM ���
Walk-through	

•  Start-Up	

• Main Function	

•  DFU Mode	

•  Image Validation	

Start-Up	

•  Checks to ensure it’s running at 0x0	

•  Copies DATA section from SROM to
SRAM	

•  Clears memory where heap will be located	

•  Sets up exception stack and main stack	

•  Jumps to main function	

Example From A4	

•  0x160 bytes of data located at 0xC000 is
copied to 0x8402C000	

• Memory from 0x8402C160 to 0x84039000
is cleared for heap	

•  Exception stacks set to 0x84039800 and
main stack set to 0x8403C000	

Main Function	

•  Split into 2 different parts.	

•  First part checks which buttons are being
held down the check for DFU boot.	

•  Second part checks boot method and
proceeds to load and validate image.	

Normal Boot Method	

•  In iPod2g images were loaded from NOR
flash chip.	

• Modern devices all load images from
NAND flash.	

•  If loading from NOR/NAND fails,
BootROM defaults into DFU mode.	

DFU Mode	

•  USB code receives most of the changes in
each BootROM revision.	

•  Very buggy portion of code!	

•  3 out of 5 exploits discovered were in this
portion of BootROM	

DFU Initialization	

•  Allocates memory for send and receive
buffers.	

•  Resets global variables to known state.	

•  Sets up USB descriptors, interfaces, and
registers callbacks for endpoints.	

•  Enters infinite loop waiting for global “file
received” variable to be set.	

USB Task	

• When USB packet sent, device triggers an

IRQ.	

•  Interrupt handler looked up in VIC table.	

•  Simple requests are handled in USB
interrupt handler.	

• Other requests are queued up to be
handled later.	

Control Request
Packets	

•  0x21, 1 - Send Data	

•  0xA1, 2 - Recv Data	

•  0xA1, 3 - Get Status	

•  0x21, 4 - Reset Counters	

•  0xA1, 5 - Get State	

Ending USB Task	

•  Image validation starts whenever the global
“file received” variable has been set.	

•  This can be caused by sending 1 empty
“Send Data” packet, and 3 “Get Status”
packets followed by a USB reset.	

• Or when the maximum send or receive
size has been reached.	

Image Validation	

•  Image Descriptor	

•  Signature Check	

•  Device Check	

•  Image Decryption	

Image Descriptor	

• Memz structure holds information about
image in memory.	

•  Information in Img3 header compared with
information in Memz structure.	

•  Includes flags describing what kind of
image, if it was loaded from NAND or
DFU.	

Signature Check	

•  Img3 header is sanity checked to ensure all

sizes are in correct ranges.	

•  SHA1 taken of all data between the end of
Img3 header, and the beginning of the
SHSH tag.	

•  SHSH tag is decrypted by public certificate
in CERT tag and verified against SHA1 hash
of data.	

Device Check	

•  Checks are performed to ensure image

loaded is for correct chip, board, and
version.	

•  ECID for device is checked to make sure
firmware was personalized for this device
only.	

•  These checks can all be bypassed if the
device is a developer device.	

Image Decryption	

•  KBAG tag in image is decrypted using the

GID key in the AES module.	

•  Decrypted KBAG tag contains
concatenated key and IV used to decrypt
the DATA portion of image.	

•  If validation fails at any point, the entire
image is cleared out and DFU mode is
reentered.	

Past Exploits in���
BootROM	

•  Pwnage2	

•  24kpwn	

•  SteakS4uce	

•  SHAtter	

•  LimeRa1n	

Pwnage and Pwnage2	

•  Pwnage based on fact Apple was not
checking LLB’s signature in BootROM
allowing untethered jailbreak	

•  Pwnage2 discovered by Wizdaz allowed
early code execution to apply first Pwnage.	

•  Vulnerability was in the certificate parser,
but not much other information is known.	

24kpwn	

•  Starting with iPod2g, Apple began checking
signature of LLB and switched to new Img3
format killing Pwnage and Pwnage2.	

•  A new untethered BootROM exploit was
needed.	

•  Chronic-Dev Team was formed and the
search began.	

The Discovery	

•  Shortly after I joined the search, @pod2g

made an amazing discovery.	

•  The NOR Image loading routine was failing
to check if the size of the image was larger
than the size reserved for it.	

•  By flashing an LLB greater than 0x24000
bytes the end the image would begin
overwriting the beginning of BSS segment.	

The Analysis	

•  USB device descriptors and task structure
had to be rewritten to prevent BootROM
from becoming unresponsive or crashing.	

•  SHA1 MMIO addresses appeared to be a
good target, but we were unsure how they
were used.	

•  Finally @planetbeing came to the rescue!!!	

The Exploitation	

•  Possible to achieve an arbitrary 4 byte
write by overwriting SHA1 addresses.	

•  How do we know where exactly the
return address is for us to overwrite
though?	

•  BRUTE FORCE!!!!	

The Payload	

•  Payload was simple added into a known
location in the exploit LLB.	

•  Fixed up memory that was altered to
trigger the exploit.	

•  Finally jumps back into image loading
routine past the signature checking to
continue loading image unsigned.	

The Big Picture	

SteakS4uce	

• @comex enters scene and starts schooling
us in userland exploitation.	

• @pod2g decides to take another look into
BootROM	

•  Comes to be excited saying he might of
found one!	

The Discovery	

•  A very simple USB fuzzer to try all possible
USB packets.	

•  Sending A1, 1 packet seemed to be
crashing all devices tested.	

• @pod2g was sure it was a heap overflow.	

The Analysis	

• My analysis didn’t show the same results.	

•  Eventually tracked it down on newer
devices to an non-exploited double free.	

•  The fuzzing continued...	

SHAtter	

•  After initial analysis the reversing of USB
portion of BootROM we had a better
understand of how things worked.	

•  I created a new fuzzer to attempt to see
how USB packets were handled when the
device was placed into different states.	

The Discovery	

•  After sending 0xA1, 2 packet to the
devices max size, failing validation and
sending another an unexpected response
was received.	

•  After this response the device crashed and
rebooted.	

The Response	

Found iPhone/iPod in DFU/WTF mode!
0x84024000: 00 00 00 00 12 01 00 02 00 00 00 40 ac 05 27 12@..'.!
0x84024010: 00 00 01 02 03 01 0a 06 00 02 00 00 00 40 01 00@..!
0x84024020: 20 40 02 84 20 40 02 84 04 09 00 00 f4 49 02 84 @.. @.......I..!
0x84024030: 6b 73 61 74 00 00 00 00 00 00 00 00 0c 47 02 84 ksat.........G..!
0x84024040: 0c 47 02 84 03 00 00 00 03 00 00 00 f0 47 02 84 .G...........G..!
0x84024050: 2c 40 02 84 f0 47 02 84 7c 3f 03 84 1c 47 02 84 ,@...G..|?...G..!
0x84024060: 5c ae 00 00 00 00 00 84 00 40 02 00 70 3f 03 84 \........@..p?..!
0x84024070: fd 3e 00 00 00 00 00 00 00 00 00 00 02 82 3f 09 .>............?.!
0x84024080: 00 00 00 00 a0 86 01 00 00 00 00 00 5d 3d 00 00]=..!
0x84024090: 30 40 02 84 94 40 02 84 94 40 02 84 00 00 00 00 0@...@...@......!
0x840240a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00!
0x840240b0: 62 6f 6f 74 73 74 72 61 70 00 00 00 00 00 00 00 bootstrap.......!
0x840240c0: 32 6b 73 74 c4 40 02 84 c4 40 02 84 f8 49 02 84 2kst.@...@...I..!
0x840240d0: f8 49 02 84 00 00 10 80 04 00 10 80 08 00 10 80 .I..............!
0x840240e0: 0c 00 10 80 10 00 10 80 20 00 10 80 24 00 10 80$...!
0x840240f0: 28 00 10 80 2c 00 10 80 30 00 10 80 40 00 10 80 (...,...0...@...!

	

The Analysis	

•  For some reason BootROM was returning

us the content from it’s BSS, heap, and
even stack segments!!	

•  After weeks of static analysis the reason
was finally discovered.	

•  BootROM was failing to reset the index for
the “Upload Counter” when reentering
DFU mode.	

Analysis Continues	

•  So we know why BootROM was returning

us the data from BSS and heap segments,
but why is it crashing?	

•  USB was returning this “Upload Counter”
as the size of file being uploaded.	

• When image validation failed, the image
load routine was calling memset passing
this size.	

The Vulnerability	

•  Similar to 24kpwn exploit except we
couldn’t write arbitrary data, only zeros.	

•  To make things harder we could only write
these zeros in 0x40 byte chunks.	

• Non-exploitable you say? HA!!	

First Attempt	

•  Change the return value!	

•  Could we overwrite the R4 register which
was pushed onto stack before the call to
memset?	

• When memset returned R4 would be
popped back off the stack and moved into
R0 causing the image load function to
return 0 (success)	

First Fail	

• Our payload, along with heap would been
wiped out in the process.	

•  The 0x40 byte limit made targeting a
specific register on stack unpractical.	

• We needed to find a better way to control
how much data was being zeroed	

Second Attempt	

•  There was another memset in image

loading routine.	

•  After SHA1 had been checked, the routine
would memset over the data in SHSH tag.	

•  By altering the size of the SHSH tag we
could then memset the exact number of
bytes needed and leave our payload and
image intact!	

Second Fail	

•  Stack layout for this function was different
than the previous memset.	

•  Heap had still be completely wiped out
making recovery near impossible.	

•  Still unable to alter the return value to
return success.	

Third Attempt	

•  Since we could overwrite the exact

number of bytes needed, why not attack
heap?	

•  By overwriting the Least Significant Bytes
we could alter heap address and point
them back to a location we control!	

•  The address 0x840271C0 could become
0x84020000, right inside our load address.	

Third Fail	

•  The code between the first SHSH memset,
and the final memset at the end of image
load routine was too short.	

•  Unable to find any usable pointers in heap
to allow us to take control in this way.	

•  Sad and depressed we gave up.	

SteakS4uce���
Revisted	

•  It appeared Apple had won that round.	

• @pod2g turned his attention back to the
heap overflow he discovered in iPod2g.	

•  In the process of exploiting it he stumbled
upon another unexpected find.	

BootROM ���
Exception Vectors	

• While attempting to exploit SHAtter, we
assumed overwriting a pointer to 0x0
would have no effect.	

•  0x0 points to ROM, and there’s no way to
overwrite ROM right?	

• Wrong!! The data containing the function
pointers to exception vectors was actually
writable!!!	

BootROM���
SHAttered	

•  The layout of BSS had changed in A4
BootROM.	

•  Instead of USB descriptors being the first
structure in BSS, the SHA1 pointers were
now the first values.	

•  By overwriting these to zero, we could
then overwrite the exception vectors
during the next SHA1 calculation!!	

First task is to shift the 	

upload index by 0x80 bytes	

After a failed validation attempt 0x80 bytes 	

is memset but the upload index isn’t reset	

We now fill the buffer with zeros 	

to ensure everything is set to a known value	

Next we download another 0x2C000 bytes 	

from the device pushing the upload index 0x80 	

bytes past it’s max size	

After another failed image validation attempt 	

the SHA1 registers are overwritten with zeros	

The counters are reset to prepare 	

for the second pass	

This time we shift the 	

upload index by 0x140 bytes	

After another failed image validation 	

attempt the upload index remains at 0x140	

Finally we upload our payload containing 	

the fake exception vectors pointing to our payload	

Last we download another 0x2C000 bytes 	

to push the size up to 0x2C140	

This time when image validation	

occurs the exception vectors are	

overwritten with the data in our payload	

When the memset occurs at the end a 	

panic occurs and our new exception handler 	

is called to jump to our payload	

The Payload	

•  First it accepts an image to be sent over
USB.	

• Next it decrypts that image manually.	

•  Finally it patches the image to remove
signature checks and change the address of
“go” command.	

•  Finally we jump into our unsigned image.	

The Tragedy	

•  Spent over a month fixing GreenPois0n to
use SHAtter exploit.	

•  Announced we’d finally be releasing
GreenPois0n on 10/10/10 at 10:10:10	

•  Three days before release, @geohot pops
up and releases LimeRa1n exploit.	

LimeRa1n	

•  After announcing greenpois0n release date,

@geohot thought we had discovered the
same exploit as him.	

•  Although @geohot had also discovered
SHAtter he didn’t think it was exploitable.	

•  LimeRa1n was superior since he worked
on all devices and SHAtter only worked on
A4.	

The Discovery	

• Not much is known how he discovered it.	

•  He probably was just fuzzing USB packets
like we were.	

•  USB timeouts were broken in libusb on
OSX so we would of never found this
vulnerability.	

The Analysis	

•  LimeRa1n appears to be a race condition
heap buffer overflow in USB stack.	

•  After release I asked @geohot to explain
why it worked.	

•  He said he had no clue, but I will speculate
on my theory in the next part.	

The Exploit	

•  By sending a packet with a short timeout
(10ms) heap corruption allowed an
arbitrary 4 byte overwrite.	

•  SHAtter was used to locate the return
address to overwrite.	

•  Spray the heap with fake chunks and wait
for something to be freed.	

The Payload	

•  Biggest pain was creating a work-around

for libusb’s broken timeouts.	

•  After replacing SHAtter with LimeRa1n in
greenpois0n we just used the same
payload.	

• We hoped we could keep SHAtter private
for the next devices, but found it posted on
pastebin the next day.	

BootROM���
Exploitation Methods	

•  Stack Buffer Overflows	

•  Heap Buffer Overflows	

•  Segment Buffer Overflows	

•  Race Conditions	

•  Recursive Stack Overflows	

Stack Buffer Overflows	

•  Very easy to exploit if discovered.	

•  Stack is executable and deterministic.	

•  Payload could also be place and executed in
load address or heap.	

Heap Buffer Overflows	

• Not much more difficult to exploit.	

•  Heap is executable.	

•  Few allocations also make heap very
predictable.	

• Only challenge is finding return address on
stack.	

BootROM Heap
Simulator	

•  During SHAtter I reverse engineered the
allocation functions and created a
simulator.	

•  Very few allocations in heap make it very
predictable.	

•  Let’s you visualize and debug heap layouts
in BootROM to create heap overflows.	

Segment Overflows	

•  The type of bug we’ve encountered most
often.	

• With arbitrary control very easy to exploit.	

• With limited control of data, exploitability
depends on what’s contained in next
segment.	

•  SHA1 MMIO address always a good target.	

Race Conditions	

• Only 2 tasks running in BootROM idle_task
and usb_task.	

•  Hardware interrupts can also be seen as
tasks.	

•  Software can’t predict when hardware will
send an interrupt (unless you’re sitting at a
WFI instruction).	

The Theory	

•  USB packet sent to the device.	

•  IRQ exception is thrown and USB interrupt
handler launched.	

•  Packet is queued and control returned to
main task.	

• Main task begins to handle this packet.	

The Panic	

•  During processing of USB packet, another
USB packet is sent which clears the queue.	

•  Control is returned back to main task
which unknowingly continues trying to
handle packet which was deleted.	

•  This is most likely the reason behind the
LimeRa1n exploit.	

Recursive Stack
Overflows	

• Not sure of any recursive functions in
BootROM, but there might be.	

• Main stack is fairly large and might be
difficult to pass.	

•  Exception stack is much smaller and
boarders the end of heap.	

Summary	

•  Limited attack surface, but most crashes
found were exploitable.	

•  Difficult part is lack of debugging and
months of static analysis.	

•  Hopefully more people will be interested in
helping find new BootROM exploits.	

Questions?	

