SHAttered Dreams

Disclaimer

® Nothing in this talk should imply that | was
responsible these BootROM exploits.

® Special thanks to my wonderful friend

@pod2g for staying up late at night and
arguing with me over why things were

crashing.

® This is not my story, this is our story. You
should be up here on stage with me now.

Introduction

® Who am I?

Who am |!

® Joshua Hill (@pOsixninja)

Accomplishments

Worked with Chronic-Dev Team for 4
years. Currently independent researcher.

Chief Architect behind the GreenPoisOn
and Absinthe jailbreaks.

Been reversing iOS BootROM since 2008.

Stole these slides from other presentations.

Agenda

® What is a BootROM
® How to dump BootROM

Terminology

SROM - SecureROM

SRAM - SecureRAM

MMIO - Memory Mapped I/O

MIU - Memory Interface Unit
MMU - Memory Management Unit
DFU - Device Firmware Update

Terminology (cont.)

BSS - Incorrect term we used to describe
the DATA section.

SHSH - Secure Hash used for image
validation

LLB - Low Level Bootloader
IRQ - Interrupt Request

VIC - Vector Interrupt Controller

vvinat IS
BootROM

® Boot-up Procedure

Boot-up Procedures

® Automatically mapped at 0x0 when
powered on.

® Allocates a small section of SRAM for
dynamic data.

® Chooses boot method or defaults back to
DFU mode.

Memory Mappings

A4 BootROM Memory Map

0x0 0xC000 0x84000000 0x8402C000 0x8402C160 0x8402F000 0x84039000 0x84039800 0x8403C000

Exception Stack Main Stack

Device Changes

® Address of SRAM has changed over the
years but always same address as LLB and
iBSS.

® iPod2g was 0x22000000, A4 chips was
0x84000000

® Size of load address changed from 0x24000
bytes to 0x2CO000 bytes after A4

HOw LO LJUITIP

BootROM

® Dump from iBoot.

Lumping rrom
Physical Memory

® This technique first discovered by @pod2g
to dump BootROM from iBoot.

® No clue why it was worked at the time.

® Discovered later BootROM was actually
remapping itself for some reason.

DOOULNUITT NAldolTiy

Remapping Itself

ROM:000044FE 01C U(OAVAS R1, 0xBF000000
ROM:00004502 01cC MOVS R R
ROM: 00004504 OlC U(OAVAS Ri2< _#1

LR Al Sbi B AR RS Al Al L N A A I A SN AN 3 SVt L Sl Sy Dol 50 S s Ve s e O BN S s P LR e 2l b U SR T 6 gt B a Tl A S S LT e o A TN
- RU. ,‘.m \e‘ & “ RO U e O L D R NGRS Dl s e e AR S R O B i SR Sl
"f‘ e -! e ; %) ‘ol A Bt e T " "aLe Ve " e A /'(‘.’."-9:. 7 W ~;.-"-"p.‘_{.,- ﬁ"-_ . .k", Ty '34‘" A;; P k;“z.“'.:‘?-h af"‘{ .’\-'_-:‘ St
'- .) X \] ¢ X R Al St S TN s 3
g 4 .

A o o T o = AL 0%,
v'.’-‘{.._‘.-'h et 'm’"-g‘.‘." o a g-" ' '~‘.‘\""‘"‘..':£\"-"—'.“~ a3 ~,".’.‘.A ":’.,'-. T T
DA A P . A .

Dumping from Iboot
With Cyanide

hexdump 0xBF000200

xbf000200:
xbf000210:
xbf000220:
xb£f000230:

53 65 63
6c 38 39
67 68 74
49 6e 63

0x40

75 72 65 52 4f 4d
330:3.0.57807:3:569 0 2¢
20 32 30 30 39 2c
2e 00 00 00 00 OO

20 66 6f 72 20 73 35 SecureROM for s5
20 43 6f 70 79 72 69 18930xsi, Copyri
20 41 70 70 6¢c 65 20 ght 2009, Apple
0i0520.0.220:0-::0:0-0,0 010::0. 085 TN Cais S besainn dik s s

LUltipirig rrofr m\Crrici

Payload

1d hook () {
IOLog("pOsixninja is in da house!!\n");
volid* mem = IOMemoryDescriptor (0xBF000200, 0x40, 3);
IOLog("mem = 0x%08x\n", mem);
volid* map = IOMemoryDescriptor map(mem, 3);
IOLog("map = 0x%08x\n", map);
unsigned int* va = IOMemoryMap getVirtualAddress(map);
IOLog("va = 0x%08x\n", va);
IOHexdump(va, 0x40);

Uutput rrom Nerneil
Payload

Osixninja is in da house!!
em = 0x89878930

)ORAa0RAR

Exposing via MIU

® Trick discovered by @planetbeing | believe.

® By changing the value of MIU register in
ARM-10 MMIO BootROM would magically
appear back at 0xO0.

® This allowed the first BootROM to be
dumped.

BootROM Dumper

® Created by @pod2g using the SHAtter
0otROM exploit.

AS BootROM

® None of these tricks appear to work on A5
processor anymore.

® This would be the first step to exploiting
any crashes discovered in new BootROM.

® Any hardware guys out there wanna take a
stab at it!

LDUULIN\U/I |

Walk-through

® Start-Up

Start-Up

Checks to ensure it's running at 0x0

Copies DATA section from SROM to
SRAM

Clears memory where heap will be located
Sets up exception stack and main stack

Jumps to main function

Example From A4

Ox |60 bytes of data located at OxCO0OQO is
copied to 0x8402C000

Memory from 0x8402C 160 to 0x84039000
is cleared for heap

Exception stacks set to 0x84039800 and
main stack set to 0x8403C000

Main Function

® Split into 2 different parts.

® First part checks which buttons are being
held down the check for DFU boot.

® Second part checks boot method and
proceeds to load and validate image.

‘ Power On ‘

Initialize SoC

Loop 5 | Sleep 1 Second

Else |l—— If Power Button [Tre > If Home Button .
Pressed Pressed '

Boot from NOR
or NAND Loop 5 |« Sleep 1 Second

Else |l—— If Power Button [False > If Home Button \ True

Pressed Pressed

Normal Boot Method

® In iPod2g images were loaded from NOR
flash chip.

® Modern devices all load images from
NAND flash.

® If loading from NOR/NAND fails,
BootROM defaults into DFU mode.

DFU Mode

® USB code receives most of the changes in
each BootROM revision.

® Very buggy portion of code!

® 3 out of 5 exploits discovered were in this
portion of BootROM

DFU Initialization

Allocates memory for send and receive
buffers.

Resets global variables to known state.

Sets up USB descriptors, interfaces, and
registers callbacks for endpoints.

Enters infinite loop waiting for global “file
received’ variable to be set.

gUsbRecvBuffer

gUsbSendBuffer

~

/

Enter DFU Boot — Open USB Clockgate — Allocate Buffers —»Create USB Descriptors—®| Set gUsbStatus to 2

|

'

Initialize Global L 5 Start USB Task

Setup Endpoint

Variables Callbacks
sbDownloadIindex gUsbFileReceived usb_send_file
A4 Y
gUsbTotalRecv usb_idle

usb_recv_file

» While

gFileReceived ==

!

False

!

Validate Image

Sleep

—» True

USB Task

When USB packet sent, device triggers an

IRQ.
Interrupt handler looked up in VIC table.

Simple requests are handled in USB
interrupt handler.

Other requests are queued up to be
handled later.

W—=UTHILT Ul IANTUUCOL

Packets

® 0x2l, | - Send Data
® 0xAl, 2 - Recv Data

Ending USB Task

® Image validation starts whenever the global
“file received” variable has been set.

® This can be caused by sending | empty
“Send Data” packet, and 3 "Get Status’
packets followed by a USB reset.

® Or when the maximum send or receive
size has been reached.

Image Validation

® Image Descriptor

nature Chec

>
A

"y‘v ‘) R A A. ., "‘

3

Image Descriptor

® Memz structure holds information about
Image in memory.

® Information in Img3 header compared with
information in Memz structure.

® Includes flags describing what kind of
image, if it was loaded from NAND or

DFU.

Signature Check

® Img3 header is sanity checked to ensure all
sizes are in correct ranges.

® SHAI taken of all data between the end of

Img3 header, and the beginning of the
SHSH tag.

® SHSH tag is decrypted by public certificate
in CERT tag and verified against SHA| hash
of data.

Device Check

® Checks are performed to ensure image
loaded is for correct chip, board, and
version.

® ECID for device is checked to make sure
firmware was personalized for this device
only.

® These checks can all be bypassed if the
device is a developer device.

Image Decryption

® KBAG tag in image is decrypted using the
GID key in the AES module.

® Decrypted KBAG tag contains
concatenated key and |V used to decrypt
the DATA portion of image.

® If validation fails at any point, the entire
image is cleared out and DFU mode is

reentered.

PROD

ECID

SEPO
age Validation Check IMGS3 | Check IMG3 >
Header Footer
SHA1 Checksum Parse ASN1
of Image Encoded Cert SDOM

Check IMG3
Tags » Decrypt K
CHIP
BORD Decrypt L
Jump to Image < Copy Da

Addre:

I'ast LAPIVILWL 1

BootROM

® Pwnage2

Pwnage and Pwnage?2

® Pwnage based on fact Apple was not
checking LLB's signature in BootROM

allowing untethered jailbreak

® Pwnage2 discovered by Wizdaz allowed
early code execution to apply first Pwnage.

® Vulnerability was in the certificate parser,
but not much other information is known.

24kpwn

® Starting with iPod2g, Apple began checking
signature of LLB and switched to new Img3
format killing Pwnage and Pwnage?.

® A new untethered BootROM exploit was
needed.

® Chronic-Dev Team was formed and the
search began.

The Discovery

® Shortly after | joined the search, @pod2g
made an amazing discovery.

® The NOR Image loading routine was failing
to check if the size of the image was larger
than the size reserved for it.

® By flashing an LLB greater than 0x24000

bytes the end the image would begin
overwriting the beginning of BSS segment.

The Analysis

® USB device descriptors and task structure
had to be rewritten to prevent BootROM
from becoming unresponsive or crashing.

® SHAI| MMIO addresses appeared to be a
good target, but we were unsure how they

were used.

® Finally @planetbeing came to the rescue!!!

The Exploitation

® Possible to achieve an arbitrary 4 byte
write by overwriting SHA| addresses.

® How do we know where exactly the
return address is for us to overwrite
though!?

® BRUTE FORCE!!!

The Payload

® Payload was simple added into a known
location in the exploit LLB.

® Fixed up memory that was altered to
trigger the exploit.

® Finally jumps back into image loading
routine past the signature checking to
continue loading image unsigned.

e blg Ficture

Ox00: 33 67 6D 49 00 41 02 00 EC 40 02 00 8C 00 01 00 Ox240C0: CO 40 02 22 CO 40 02 22 C8 40 02 22 C8 40 02 22
0x10: 62 6C 6C 69 41 54 41 44 0C 00 01 0O 0O 0O 01 0O Ox240D0: 84 53 02 22 00 00 00 38 04 0O 0O 38 08 00 0O 38
0x20: 01 30 02 22 35 98 E5 35 D8 56 21 DE 7A F2 6B OA Ox240E0: O0C 00 00 38 10 00 00 38 20 0O 00 38 24 00 00 38
Ox30: AE 09 9D F8 26 CO 7A 1B 16 6F DC 2E FB 79 87 2A Ox240F0: 28 00 00 38 2C 00 00 38 30 00 00 38 24 FE 02 22

LLB header modified

. SHA1 addresses are overwritten with
SO size is greater than 0x24000 o
address to the current function's
and address to payload placed at return address
beginning of DATA section
0x22000000 0x22023000 0x22024000
| 4 A |
Y LLB Padding Y Payload Padding Y USB Descriptor | Task Structure | SHA1 Addresses
~\ [\ g4
Load Address \ BSS Segment

This copies our payload address
over the current return address which
jumps back into our payload on return

Upon SHA1 calculation of image
the value from the beginning of LLB
DATA <cection ie conied into the addrecss

SteakS4uce

® @comex enters scene and starts schooling
us in userland exploitation.

® @pod2g decides to take another look into
BootROM

® Comes to be excited saying he might of
found one!

The Discovery

® A very simple USB fuzzer to try all possible
USB packets.

® Sending Al, | packet seemed to be
crashing all devices tested.

® @pod2g was sure it was a heap overflow.

The Analysis

® My analysis didn’t show the same results.

® Eventually tracked it down on

2 7y 2 5 Fo FRASE AR z et > AN
ok » > 4 s e 3 - . o

SHAtter

® After initial analysis the reversing of USB
portion of BootROM we had a better
understand of how things worked.

® | created a new fuzzer to attempt to see
how USB packets were handled when the
device was placed into different states.

The Discovery

® After sending OxAl, 2 packet to the
devices max size, failing validation and
sending another an unexpected response
was received.

® After this response the device crashed and
rebooted.

ound iPhone/iPod

x84024000:
x84024010:
x84024020:
x84024030:
x84024040:
x84024050:
x84024060:
x84024070:
x84024080:
x84024090:
x840240a0:
x840240b0:
x840240cO0:
x840240d0:
x840240e0:
x840240f£f0:

00
00
20
6b
Oc
2c
5¢
fd
00
30
00
62
32
£8
Oc
28

00
00
40
73
47
40
ae
3e
00
40
00
6f
6b
49
00
00

The Response

in
00
01
02
61
02
02
00
00
00
02
00
6f
73
02
10
10

DFU/WTF mode

00
02
84
74
84
84
00
00
00
84
00
74
74
84
80
80

12
03
20
00
03
f0
00
00
al
94
00
73
cé
00
10
2c

01
01
40
00
00
47
00
00
86
40
00
74
40
00
00
00

00
Oa
02
00
00
02
00
00
01
02
00
72
02
10
10
10

02
06
84
00
00
84
84
00
00
84
00
61
84
80
80
80

00
00
04
00
03
JXe;
00
00
00
94
00
70
cé
04
20
30

00
02
09
00
00
3f
40
00
00
40
00
00
40
00
00
00

00
00
00
00
00
03
02
00
00
02
00
00
02
10
10
10

40
00
00
00
00
84
00
00
00
84
00
00
84
80
80
80

ac
00
f4
Oc
fO0
lc
70
02
5d
00
00
00
£8
08
24
40

05
40
49
47
47
47
3f
82
3d
00
00
00
49
00
00
00

27
01
02
02
02
02
03
3f
00
00
00
00
02
10
10
10

(i con@ised
ksat.....
JiGid s SRl
Dl Gl
e 2
S T a ey
8 AN RS
bootstrap
2kst.@Q...
I R e L

oA Ty

S,

AIRAERY ey SN
AL T ey
T € SN
e e O e,
Qsip2ais
..... %
g
Qi e
Qe T
LS
Fererl (s

The Analysis

For some reason BootROM was returning
us the content from it's BSS, heap, and
even stack segments!!

After weeks of static analysis the reason
was finally discovered.

BootROM was failing to reset the index for
the "Upload Counter” when reentering
DFU mode.

Analysis Continues

So we know why BootROM was returning
us the data from BSS and heap segments,
but why is it crashing?

USB was returning this "Upload Counter”
as the size of file being uploaded.

When image validation failed, the image
load routine was calling memset passing
this size.

The Vulnerability

® Similar to 24kpwn exploit except we
couldn’t write arbitrary data, only zeros.

® To make things harder we could only write
these zeros in 0x40 byte chunks.

® Non-exploitable you say? HA!!

First Attempt

® Change the return value!

® Could we overwrite the R4 register which
was pushed onto stack before the call to

memset!

® When memset returned R4 would be
popped back off the stack and moved into

RO causing the image load function to
return O (success)

First Fail

® Our payload, along with heap would been
wiped out in the process.

® The 0x40 byte limit made targeting a
specific register on stack unpractical.

® We needed to find a better way to control
how much data was being zeroed

Second Attempt

There was another memset in image
loading routine.

After SHA| had been checked, the routine
would memset over the data in SHSH tag.

By altering the size of the SHSH tag we
could then memset the exact number of
bytes needed and leave our payload and
image intact!

Second FRail

® Stack layout for this function was different
than the previous memset.

® Heap had still be completely wiped out
making recovery near impossible.

® Still unable to alter the return value to
return success.

Third Attempt

® Since we could overwrite the exact

number of bytes needed, why not attack
heap?

® By overwriting the Least Significant Bytes
we could alter heap address and point
them back to a location we control!

® The address 0x840271CO could become
0x84020000, right inside our load address.

Third Fail

® The code between the first SHSH memset,
and the final memset at the end of image
load routine was too short.

® Unable to find any usable pointers in heap
to allow us to take control in this way.

® Sad and depressed we gave up.

o ULLWANW TUNL W

Revisted

® It appeared Apple had won that round.

® @pod2g turned his attention back to the
heap overflow he discovered in iPod2g.

® In the process of exploiting it he stumbled
upon another unexpected find.

e W W Wil \ wf 1|1 _

Exception Vectors

® While attempting to exploit SHAtter, we
assumed overwriting a pointer to 0x0
would have no effect.

® 0x0 points to ROM, and there’s no way to
overwrite ROM right!

® Wrong!! The data containing the function

pointers to exception vectors was actually
writable!!!

e o W Wi \

SHATtte red

® The layout of BSS had changed in A4
BootROM.

® Instead of USB descriptors being the first
structure in BSS, the SHAI| pointers were
now the first values.

® By overwriting these to zero, we could
then overwrite the exception vectors
during the next SHAI calculation!!

First task is to shift the
upload index by 0x80 bytes

Downloaded
Uploaded gUsbUploadIndex = 0x80

gUsbDownloadIndex = 0x0

0x84000000 0x8402C000

- Empty SHA1 Addresses | Task Structure | USB Descriptor

Load Address BSS Segment

After a failed validation attempt 0x80 bytes
is memset but the upload index isn’ t reset

Downloaded
Uploaded gUsbUploadindex = 0x80
gUsbDownloadIndex = 0x0

0x0 0x84000000 0x8402C000

Empty SHA1 Addresses | Task Structure | USB Descriptor

ROM Load Address BSS Segment

We now fill the buffer with zeros
to ensure everything is set to a known value

Downloaded
Uploaded gUsbUploadIndex = 0x80

gUsbDownloadIndex = 0x2C000

0x84000000 0x8402C000

. _ _ _ _ _ _—
Il Zes | SHA1Addresses | TaskStucture| USB Descriptor
e

ROM Load Address BSS Segment

Next we download another 0x2CO000 bytes
from the device pushing the upload index 0x80
bytes past it s max size

Downloaded
Uploaded gUsbUploadIndex = 0x2C080
_ gUsbDownloadIndex = 0x2C000

0x0 0x84000000 0x8402C000

1
SHA1 Addresses | Task Structure| USB Descriptor
1 —

Load Address BSS Segment

After another failed image validation attempt
the SHAI registers are overwritten with zeros

Downloaded
Uploaded gUsbUploadindex = 0x2C080
gUsbDownloadIndex = 0x0

0x0 0x84000000 0x8402C000

KK
SHAT Addiesses | Task Structure| USB Descriptor
EEE e

ROM Load Address BSS Segment

The counters are reset to prepare
for the second pass

Downloaded
Uploaded gUsbUploadindex = 0x0
gUsbDownloadIndex = 0x0

0x84000000 0x8402C000

1
Vectors Empty SHA1 Addresses | Task Structure | USB Descriptor
1

Load Address BSS Segment

This time we shift the
upload index by 0x140 bytes

Downloaded
Uploaded gUsbUploadindex = 0x140
gUsbDownloadIndex = 0x0

0x84000000 0x8402C000

I SHA1 Addresses | Task Structure| USB Descriptor
Load Address BSS Segment

After another failed image validation
attempt the upload index remains at Ox 140

Downloaded
Uploaded gUsbUploadindex = 0x140
gUsbDownloadIndex = 0x0

0x0 0x84000000 0x8402C000

I SHA1 Addresses | Task Structure| USB Descriptor
Load Address BSS Segment

Finally we upload our payload containing
he fake exception vectors pointing to our payloac

Downloaded
Uploaded gUsbUploadIndex = 0x140
gUsbDownloadIndex = 0x2C000

0x0 0x84000000 0x8402C000

1 e —
I:\ Payload SHA1 Addresses | Task Structure | USB Descriptor
1

ROM Load Address BSS Segment

Last we download another 0x2C000 bytes
to push the size up to 0x2C 1[40

Downloaded
Uploaded gUsbUploadIndex = 0x2C140
_ gUsbDownloadIndex = 0x2C000

0x0 0x84000000 0x8402C000

Load Address BSS Segment

This time when image validation
occurs the exception vectors are

overwritten with the data in our payload

Downloaded
Uploaded gUsbUploadIndex = 0x2C140
Memset gUsbDownloadIndex = 0x0
0x0 0x84000000 0x8402C000
Overwritten Payload SHA1 Addresses | Task Structure| USB Descriptor
ROM Load Address BSS Segment

When the memset occurs at the end a
panic occurs and our new exception handler

is called to jump to our payload

Downloaded
Uploaded gUsbUploadIndex = 0x2C140
Memset gUsbDownloadIndex = 0x0
0x0 0x84000000 0x8402C000
Overwritten Payload SHA1 Addresses | Task Structure| USB Descriptor
ROM Load Address BSS Segment

The Payload

First it accepts an image to be sent over
USB.

Next it decrypts that image manually.

Finally it patches the image to remove
signature checks and change the address of
"go’ command.

Finally we jump into our unsigned image.

The Tragedy

® Spent over a month fixing GreenPoisOn to
use SHAtter exploit.

® Announced we'd finally be releasing
GreenPoisOn on 10/10/10 at 10:10:10

® Three days before release, @geohot pops
up and releases LimeRaln exploit.

LimeRaln

® After announcing greenpoisOn release date,

@geohot thought we had discovered the
same exploit as him.

® Although @geohot had also discovered
SHAtter he didn't think it was exploitable.

® LimeRaln was superior since he worked

on all devices and SHAtter only worked on
A4.

The Discovery

® Not much is known how he discovered it.

® He probably was just fuzzing USB packets
like we were.

® USB timeouts were broken in libusb on
OSX so we would of never found this
vulnerability.

The Analysis

® LimeRaln appears to be a race condition
heap buffer overflow in USB stack.

® After release | asked @geohot to explain
why it worked.

® He said he had no clue, but | will speculate
on my theory in the next part.

The Exploit

® By sending a packet with a short timeout
(10ms) heap corruption allowed an
arbitrary 4 byte overwrite.

® SHAtter was used to locate the return
address to overwrite.

® Spray the heap with fake chunks and wait
for something to be freed.

The Payload

® Biggest pain was creating a work-around
for libusb’s broken timeouts.

® After replacing SHAtter with LimeRaln in
greenpoisOn we just used the same
payload.

® We hoped we could keep SHAtter private
for the next devices, but found it posted on
pastebin the next day.

T AS ASATIRY 4 B

Exploitation Methods

Stack Buffer Overflows
Heap Buffer Overflows
Segment Buffer Overflows
Race Conditions

Recursive Stack Overflows

Stack Buffer Overflows

® Very easy to exploit if discovered.

® Stack is executable and deterministic.

® Payload could also be place and executed in
load address or heap.

Heap Buffer Overflows

Not much more difficult to exploit.
Heap is executable.

Few allocations also make heap very
predictable.

Only challenge is finding return address on
stack.

' W W Wil \ wf 1 _ _ lvurl

Simulator

® During SHAtter | reverse engineered the
allocation functions and created a
simulator.

® Very few allocations in heap make it very
predictable.

® Let's you visualize and debug heap layouts
in BootROM to create heap overflows.

Segment Overflows

The type of bug we've encountered most
often.

With arbitrary control very easy to exploit.

With limited control of data, exploitability
depends on what's contained in next
segment.

SHAI| MMIO address always a good target.

Race Conditions

® Only 2 tasks running in BootROM idle task
and usb task.

® Hardware interrupts can also be seen as
tasks.

® Software can't predict when hardware will

send an interrupt (unless you re sitting at a
WVFI instruction).

The Theory

USB packet sent to the device.

IRQ exception is thrown and USB interrupt
handler launched.

Packet is queued and control returned to
main task.

Main task begins to handle this packet.

The Panic

® During processing of USB packet, another
USB packet is sent which clears the queue.

® Control is returned back to main task

which unknowingly continues trying to
handle packet which was deleted.

® This is most likely the reason behind the
LimeRaln exploit.

I A W Wil WiV w W e b wi N

Overflows

® Not sure of any recursive functions in
BootROM, but there might be.

® Main stack is fairly large and might be
difficult to pass.

® Exception stack is much smaller and
boarders the end of heap.

Summary

® Limited attack surface, but most crashes
found were exploitable.

® Difficult part is lack of debugging and
months of static analysis.

® Hopefully more people will be interested in
helping find new BootROM exploits.

