
Quarkslab on

iMessage Privacy
HITB, Kuala Lumpur, oct. 2013

@pod2g (pod2g@quarkslab.com)
gg (gg@quarkslab.com)

mailto:cattiauxc@quarkslab.com
mailto:cattiauxc@quarkslab.com
mailto:gg@quarkslab.com
mailto:gg@quarkslab.com

Presentations

• Quarkslab is a research company specialized in
cutting edge solutions to complex security
problems. We provide innovative, efficient and
practical solutions based on profound knowledge
and years of experience in the field.

• gg: security researcher, cryptography R.E.
specialist. Joined Quarkslab in 2012

• @pod2g: security researcher, long background in
Apple product security. Joined Quarkslab in 2013

Plan	

I. The current political and media context

II. The iMessage protocol

III. MITM attacks

IV. Countermeasures

V. Final thoughts

I. THE CONTEXT
NSA, PRISM, Apple

NSA’s PRISM (US-984XN)

• American supervision program

• Mass surveillance data mining

• Based on alliances with american firms

• Can collect texts, emails, photos, etc.

• Foreigners are also potential targets

• Program was leaked by Edward Snowden

Is Apple included?

• Washington Post have leaked PRISM presentation
slides that are said to be coming from the NSA

• Looking at them, Apple joined in oct 2012

• Slides talk of « data collection », which sounds like
a transparent process

Apple publicly says:

« Two weeks ago, when technology companies were
accused of indiscriminately sharing customer data
with government agencies, Apple issued a clear
response: We first heard of the government’s
“Prism” program when news organizations asked us
about it on June 6. We do not provide any
government agency with direct access to our
servers, and any government agency requesting
customer content must get a court order. »

Source: https://www.apple.com/apples-commitment-to-customer-privacy/

https://www.apple.com/apples-commitment-to-customer-privacy/
https://www.apple.com/apples-commitment-to-customer-privacy/

What about iMessages?

« Apple has always placed a priority on protecting our
customers’ personal data, and we don’t collect or
maintain a mountain of personal details about our
customers in the first place. There are certain categories
of information which we do not provide to law
enforcement or any other group because we choose not
to retain it.

For example, conversations which take place over
iMessage and FaceTime are protected by end-to-end
encryption so no one but the sender and receiver can
see or read them. Apple cannot decrypt that data. »

Source: https://www.apple.com/apples-commitment-to-customer-privacy/

https://www.apple.com/apples-commitment-to-customer-privacy/
https://www.apple.com/apples-commitment-to-customer-privacy/

Media facts :-)

• Edward Snowden is said to have used iMessages to
hide from the NSA :-)

• DEA Thinks iMessage Encryption is Too Tough
(DEA leaked document, CNET)

Real facts

• PUSH client (SSL server authenticates clients)
certificate is 1024 bit

• iMessage encryption key is 1280 bit

• iMessage ECDSA signing key is 256 bit

• Keys are generated with the opensource Security
framework

• No certificate pinning for both PUSH and iMessage
servers (while Apple does it for SecureBoot and
Developer certificates...)

iMessage authentication

• Heavily obfuscated. State-of-the-art white box
cryptography

• Challenge-response kind

• Prevents from creating a 3rd party iMessage client
on another platform

• AppleID password thrown in plaintext (not
hashed) over SSL

@saurik reversing imagent’s white-box cryptography

Blackboards are not dead!

First weaknesses

• Due to the lack of certificate pinning, adding a fake CA to
the user keychain or obtaining a rogue (but verified)
certificate for the domain leads to:

• the leakage of the AppleID password

• the accessibility to more sensitive Apple services

• the possibility of impersonating Apple PUSH and
iMessage servers (we’ll see it later on)

• This can be done by the entity you think of, but also your
company MDM administrator or hacker « friend » using a
simple Mobile Configuration file

What is an AppleID?

A really personal and sensitive information

Isn’t it dodgy?

• The « Verified » state only
depends on if the device has
been plugged one time to a
machine running iPhone
Configuration Utility which
silently adds a signing certificate
to the device

• MDM administrators can do this
transparently to enrolled devices

II. THE PROTOCOL
PUSH, iMessage

II.1. THE BIG PICTURE
Protocols and servers involved

Two channels

• iMessages are transmitted over the PUSH protocol
(TLS, server port 5223)

‣ domain: rand(0,255)-courier.push.apple.com

‣ client certificate is authenticated

• The rest of the protocol (authentication,
administration, key and contact queries) runs over
HTTPS to other servers

‣ domain: *.ess.apple.com

Apple ESS servers
(*.ess.apple)
HTTPS 443

Apple PUSH servers
?-courier.push.apple.com

TLS 5223

Client:
MobileSMS / Messages.app

+ daemons (apsd, imagent, ...)

iMessage:
- authentication
- administration
- key repository

Transport:
- push notifications

- game center
- iMessage
- FaceTime

...

521 bit ECDH-RSA
server certificate

CN=courier.push.apple.com

2048 bit RSA
server certificate

CN=*.ess.apple.com

1024 bit RSA
device certificate

CN=< Push GUID >

[17:54:36] 192.168.1.5: proxying the response of type 'A' for init-p01st.push.apple.com
[17:54:36] 192.168.1.5: proxying the response of type 'A' for apple.com
[17:54:36] 192.168.1.5: proxying the response of type 'A' for p04-bookmarks.icloud.com
[17:54:36] 192.168.1.5: proxying the response of type 'A' for p04-contacts.icloud.com
[17:54:36] 192.168.1.5: proxying the response of type 'A' for p04-caldav.icloud.com
[17:54:36] 192.168.1.5: proxying the response of type 'A' for p04-ubiquity.icloud.com
[17:54:36] 192.168.1.5: proxying the response of type 'A' for 25-courier.push.apple.com
[17:54:37] 192.168.1.5: proxying the response of type 'A' for gs-loc.apple.com
[17:54:40] 192.168.1.5: proxying the response of type 'A' for p04-fmip.icloud.com
[17:54:44] 192.168.1.5: proxying the response of type 'A' for p04-keyvalueservice.icloud.com
[17:54:44] 192.168.1.5: proxying the response of type 'A' for keyvalueservice.icloud.com
[17:54:53] 192.168.1.5: proxying the response of type 'A' for mesu.apple.com
[17:55:13] 192.168.1.5: proxying the response of type 'A' for ocsp.apple.com
[17:55:13] 192.168.1.5: proxying the response of type 'A' for service.ess.apple.com
[17:55:15] 192.168.1.5: proxying the response of type 'A' for static.ess.apple.com
[17:55:16] 192.168.1.5: proxying the response of type 'A' for service2.ess.apple.com
[17:55:34] 192.168.1.5: proxying the response of type 'A' for service1.ess.apple.com

Domains involved HTTP Query for
PUSH servers and

configuration

iMessage
authentication iMessage contact

query

PUSH socket
establishement

II.2. THE PUSH LAYER
History, details, and man-in-the-middle

Introduction

• Apple Push Notification Service (APNS)

• Service created by Apple Inc. in 2009

• Enhance the user experience with notifications like
sounds, text alerts, etc.

• Available as an API

• Better than PULL for battery life

How it works

• Based on push technology

• Maintain an open IP connection to forward
notifications from the servers of third party
applications to Apple devices

PUSH Client

• Device communicates with the PUSH server

• Distant port : 5223 (TCP)

• Traffic encrypted with TLS

• Requires a Push-Token

• Requires a Push-Certificate

PUSH device certificate

• Generated on device APN activation

• Certificate request sent to albert.apple.com

• Signed by Apple Iphone Device CA

• Used to establish PUSH TLS communication

Mutual authentication

Push-Token

• 256-bit binary string

• Opaque, server-side generated

• Identifier to route notifications to devices

• Shared with providers

Token usage

MitM: PushProxy - 1

• Catch PUSH communications

• Decode notifications in a readable form

• Provide APIs for handling and sending

• More info: https://github.com/meeee/pushproxy

https://github.com/meeee/pushproxy
https://github.com/meeee/pushproxy

MitM: PushProxy - 2

How to:

• Generate a Root CA and add it to the keychain

• Create and sign all the required certificates with it
(APNS server, HTTPS bag server)

• Extract device TLS private key (a.k.a. device
certificate)

• Edit hosts file to redirect DNS queries to
PushProxy (or use a rogue DNS server)

Outgoing iMessage notification

0a >> Message Type
XX XX XX XX >> Next Length
04 00 04 XX XX XX XX >> Identifier (4 bytes)
01 00 14 XX XX >> Topic Hash (20 bytes)
02 00 20 XX XX >> Push-Token (32 bytes)
03 XX XX ... >> iMessage payload

II.3. IMESSAGE IDs
Tokens, keys, URIs, directory

Definitions

• AppleID: Apple identifier of a person (or a legal
entity). Most people have a single AppleID that
they use on multiple Apple devices and services

• URI: recipient identifier, either a phone number or
email address

• Push-Token: token identifying an authenticated
device

• For OS X, a « device » is a user account set-up to
receive iMessages

Organization - 1

• An Apple account (AppleID) can be linked to multiple
URIs

• Email URIs have to be verified

• A phone URI can only be added with an iPhone and the
corresponding legit SIM card

• The same URI can’t be attached to multiple AppleIDs

• A URI can be linked to multiple devices (Push-Tokens)

• On each device the user can decide which URI to handle

Organization - 2

AppleID
(pod2g@dummybox.com)

URI #1
tel:+33698765432

URI #2
mail:pod2g@dummybox.com

iPhone 5S
Push-Token: x

iMac, user pod2g
Push-Token: y

mailto:pod2g@dummybox.com
mailto:pod2g@dummybox.com
mailto:gg@quarkslab.com
mailto:gg@quarkslab.com

URI & iMessage

• Sender inputs the recipient’s URI to start the
communication

• All iMessages are encrypted and signed using
asymmetric cryptography

• Thus, there has to be a key directory

• iMessage client retrieves recipient’s public keys by
querying Apple’s ESS server

An example of contact query

Here is what is sent:

GET /WebObjects/QueryService.woa/wa/query?uri=tel:+33123456789
Host: service1.ess.apple.com
Content-Type: application/x-apple-plist
x-id-cert: [Provision Certificate]
x-id-nonce: [Random Nonce with Timestamp]
x-id-sig: [Query Signed with Provision Cert.]

Response

Here is what we get, for each associated device:
(XML plist converted to JSON for clarity)

{
 'push-token': [PushToken]
 ‘client-data’:
 {
 'show-peer-errors': True,
 'public-message-identity-version': 1.0,
 'public-message-identity-key': [Public Keys Buffer]
 }
}

Response analysis

• The public keys buffer contains:

• An ECDSA public key (256-bit): to verify
messages issued by the remote device

• A RSA public key (1280-bit): to encrypt
messages for the remote device

• Push-Token will help to route messages

• We can now send and encrypt messages to a given
URI (and all devices associated with)!

II.4. THE IM PAYLOAD
Description, goodies

An iMessage is a bplist

• The iMessage payload as seen earlier in the PUSH
Protocol section is a binary plist

• Binary plist (a.k.a. bplist) is an Apple standard
property list file

• A bplist stores serialized objects

• Objects can be of type NSString, NSNumber,
NSDate, NSData, NSArray and NSDictionary

• Serializes an NSDictionary as the root object

iMessage bplist - 1

D: True

E: ‘pair’

P: <variable length binary data> (iMessage payload,
deflate compressed)

U: <128bit binary data> (iMessage UID)

c: 100

i: <32bit integer> (messageId, same as in PUSH header)

iMessage bplist - 2

sP: mailto:pod2g@dummybox.com (emitter URI)

t: <256bit binary data> (emitter Push-Token)

tP: mailto:dhillon@dummybox.com (recipient URI)

ua: [Mac OS X,10.8.5,12F37,MacBookPro10,2]
(emitter os and hardware version)

v: 1

mailto:dhillon@dummybox.com
mailto:dhillon@dummybox.com
mailto:dhillon@dummybox.com
mailto:dhillon@dummybox.com

iMessage payload, inflated

byte 0x02 version?

short ciphertext length

data ciphertext
RSA / AES-CTR data
- ciphered with the RSA public key of the recipient

byte signature length

data signature
ECDSA signature of <ciphertext>
- computed with the ECDSA private key of the
emitter

Why did they decided to deflate ciphered data?

iMessage ciphertext

(remaining bytes)

RSA ciphertext (1280bit)

AES session key (128bit)

AES-CTR ciphertext

iMessage inner-bplist, deflate compressed

AES-CTR ciphertext

iMessage inner-bplist (inflated)

p: array of URIs in the discussion group

t: iMessage text (for iOS)

v: version (1)

x: iMessage html (attachments, and style - for OS X)

iMessage attachments

• Attachments are encrypted using AES

• They are uploaded to the iCloud storage, in a dedicated
space

• URL of the attachment and the required AES key to
decipher it are included in the special tag <FILE> added to
the HTML message body

• <FILE name="<name>" width="<width>" height="<height>"
datasize="<size>" mime-type="<mime type>" uti-type="<uti
type>" mmcs-owner="<identifier>" mmcs-url="<URL>" mmcs-
signature-hex="<signature>" file-size="<size>" decryption-
key="<key>">

Spoofing URIs

• The existence of URIs in the discussion group are
not fully verified:

• The real recipient URI has to be in the list

• Other URIs are not checked

• Phone number URIs can be text

• The result is a spoofing kind of vulnerability

DEMO #1
Conference chat with a surprise guest :)

III. MITM ATTACKS
iMessage interception and forgery

III.1. INTRODUCTION
Requirements, network tricks, and software

Original Quarkslab document

Requirements - DNS

• To achieve a man-in-the-middle attack, the DNS
requests of the victims have at least to pass
through a machine / network you control

• The point is to rogue responses for domains
service1.ess.apple.com and *.push.apple.com

• Next slide shows possible network tricks to have a
chance to forge DNS responses

Some network tricks

• Use ARP poisoning to route all ethernet packets of
the victim to your box

• Have access to physical cables, to the gateway, or any
network component in the route to the DNS server

• Create a rogue (open) wifi network or 3G network
with the same name and emit stronger

• Announce Apple’s routes with BGP, and reroute the
traffic to your own equipments (unlikely)

• Hack the DNS servers using DNS cache poisoning
and other DNS related vulnerabilities (unlikely)

Requirements - software

• PushProxy with Quarkslab’s imessage-mitm.py
handler to intercept iMessages

• Quarkslab’s ess-mitm.py to intercept and modify
Apple ESS responses

• A DNS proxy software. We used dnschef in our
tests: http://thesprawl.org/projects/dnschef/

• Python 2.7

http://thesprawl.org/projects/dnschef/
http://thesprawl.org/projects/dnschef/

Requirements - SSL

• Rogue servers, either PUSH or ESS, have to serve
valid SSL certificates from the point of view of the
victim(s)

• Either add these certificates or their root CA to the
victim’s KeyChain

• Find a flow in Apple certificate verification (unlikely?)

• Have the user install a configuration profile (or be a
MDM administrator in the company and push it)

• Have a trusted root sign your rogue certs (NSA?)

Picture

III.2. ONE-SIDED MITM
Prerequisites, theory, demo

Principle & limitations

• Idea: proxify victim’s contact requests to Apple’s ESS
server in order to exchange every public key found
with a new one. « Evil’s » in the figure to come

• The victim’s PUSH communication is also proxyfied
and is utilized to eavesdrop iMessages in real time,
and possibly modify them

• The biggest limitation to this approach is that the
victim’s private keys (PUSH device, iMessage RSA,
iMessage ECDSA) are needed

Requirements

• Network / DNS control

• Verified PUSH and ESS certificates

• Victim’s PUSH Device private key

• Victim’s iMessage RSA & ECDSA private keys

iMessage emission MitM

Evil’s RSA (priv)

Belinda’s RSA (priv) Belinda’s RSA (pub)

Evil’s RSA (pub)

Dhillon’s ECDSA (priv) Dhillon’s ECDSA (pub)

Hey!

fun... :)

Hey my love!

Evil presented his key to Dhillon instead of Belinda’s.
He owns Dhillon’s ECDSA. He can read and forge Dhillon’s messages.

BelindaDhillon

Hey my love!

?!

Evil

iMessage reception MitM

Dhillon’s RSA (priv) Dhillon’s RSA (pub)

Belinda’s ECDSA (priv) Belinda’s ECDSA (pub)

What?

Evil owns Dhillon’s RSA private key. He can read his messages.
Evil presented his ECDSA key instead of Belinda’s. He can forge messages.

What?

Dhillon BelindaEvil

<3

lol... :)
:-)

Evil’s ECDSA (pub)Evil’s ECDSA (priv)

DEMO #2
Intercepting iMessages OTA

III.3. TWO-SIDED MITM
Prerequisites, theory

Principle & limitations

• Idea: proxify all victims contact requests to Apple’s
ESS server in order to exchange every public key
found with a new one. « Evil’s » in the figure to come

• Victims’ PUSH communications are also proxyfied
and are utilized to eavesdrop iMessages in real time,
and possibly modify them

• The two-sided implementation is unpractical in
terms of network control requirements and the
PUSH device private keys of the victims are needed

Requirements

• (Great network / DNS control) * N victims

• (Verified PUSH and ESS certificates) * N victims

• (Victim’s PUSH Device private key) * N victims

iMessage emission MitM

Evil’s RSA (priv)

Belinda’s RSA (priv) Belinda’s RSA (pub)

Evil’s RSA (pub)

Dhillon’s ECDSA (priv) Dhillon’s ECDSA (pub)

Hey!

fun... :)

Hey my love!

Evil presented his key to Dhillon instead of Belinda’s.
Evil presented his key to Belinda instead of Dhillon’s.

He can read and forge Dhillon’s messages without any of his private keys.

BelindaDhillon

Hey my love! Hey my love!

Evil’s ECDSA (pub)Evil’s ECDSA (priv)

?!

Evil Evil

iMessage reception MitM

Evil’s RSA (priv)

Belinda’s ECDSA (priv) Belinda’s ECDSA (pub)

Evil’s RSA (pub)

Dhillon’s RSA (priv) Dhillon’s RSA (pub)

lol... :)

Evil presented his key to Dhillon instead of Belinda’s.
Evil presented his key to Belinda instead of Dhillon’s.

He can read and forge Belinda’s messages without any of her private keys.

BelindaDhillon

Evil’s ECDSA (pub)Evil’s ECDSA (priv)

What?<3<3<3

:-)

Evil Evil

III.4. APPLE BYPASS
Prerequisites, theory

Principle & limitations

• Basically the same as previous one, except that real
Apple’s servers are never used as a transport

• Same limitations as the classical two-sided
implementation: great network control is required,
but absolutely no victims’ private keys are needed

Requirements

• (Great network / DNS control) * N victims

• (Verified PUSH and ESS certificates) * N victims

• Any idea who have access to these requirements?

• Multiple possible answers would work ;-)

iMessage emission MitM

Evil’s RSA (priv)

Belinda’s RSA (priv) Belinda’s RSA (pub)

Evil’s RSA (pub)

Dhillon’s ECDSA (priv) Dhillon’s ECDSA (pub)

Hey!

fun... :)

Hey my love!

Evil presented his key to Dhillon instead of Belinda’s.
Evil presented his key to Belinda instead of Dhillon’s.

He can read and forge Dhillon’s messages without any of his private keys.

BelindaDhillon

Evil’s ECDSA (pub)Evil’s ECDSA (priv)

?!

Evil

iMessage reception MitM

Evil’s RSA (priv)

Belinda’s ECDSA (priv) Belinda’s ECDSA (pub)

Evil’s RSA (pub)

Dhillon’s RSA (priv) Dhillon’s RSA (pub)

lol... :)

Evil presented his key to Dhillon instead of Belinda’s.
Evil presented his key to Belinda instead of Dhillon’s.

He can read and forge Belinda’s messages without any of her private keys.

BelindaDhillon

Evil’s ECDSA (pub)Evil’s ECDSA (priv)

What?<3

:-)

Evil

III.5. BEING APPLE
Any requirements?

Requirements?

• Apple has full control over the ESS public key
directory, no need to hijack anything

• Swapping keys is transparent for the user, they are
never shown anywhere in Messages.app /
MobileSMS

IV. COUNTERMEASURES
Let me alone!

Why is it technically possible?

• Public keys are only cached in the client app memory,
and have a life time of only 30 minutes approximately

• A new iPhone added to an AppleID has to be able
to receive iMessages quick

• The lack of certificate pinning adds agencies with
strong network capabilities and root CA control to
the list of possible spies

• The average user cannot see which public keys are
being used by the client app

Simple solution #1 :-)

Presenting iMITMProtect - 1

• OS X Version ready

• Simple installer

• iOS Version on the way

• Will come as a Cydia package

• Open-source

• http://www.github.com/quarkslab/iMITMProtect

http://www.github.com/quarkslab/iMITMProtect
http://www.github.com/quarkslab/iMITMProtect

Presenting iMITMProtect - 2

• Hooks imagent service

• Contact requests to Apple’s ESS servers are
recorded to a per-user (OS X) database

• If public keys (RSA / ECDSA) change for a
particular token (which should be impossible), a
notification is thrown, and the recorded keys are
served instead to the client app

• User can list the key database and export them

MitM detection

Public key database

Features we are working on

• Full database administration: import / add keys,
remove specific keys

• Compare rows with a public key directory (where
sensible informations would be hashed)

• P2P GPG encryption, with a cleaner PKI

V. CONCLUSION
Final thoughts

Now, what do you think?

« Apple has always placed a priority on protecting our
customers’ personal data, and we don’t collect or maintain a
mountain of personal details about our customers in the first
place. There are certain categories of information which we
do not provide to law enforcement or any other group
because we choose not to retain it.

For example, conversations which take place over iMessage
and FaceTime are protected by end-to-end encryption so no
one but the sender and receiver can see or read them. Apple
cannot decrypt that data. Similarly, we do not store data
related to customers’ location, Map searches or Siri requests
in any identifiable form. »

Source: https://www.apple.com/apples-commitment-to-customer-privacy/

https://www.apple.com/apples-commitment-to-customer-privacy/
https://www.apple.com/apples-commitment-to-customer-privacy/

What is a secure protocol?

• Using strong cryptographic principles

• Implemented in a binary on which absolutely no
obfuscation was applied

• Fully documented

• Frequently analyzed by security researchers and
crypto-analysts

• With a transparent, and administrable PKI

Shall we continue to use iM?

• MITM attacks on iMessage are unpractical to the average
hacker, and the privacy of iMessage is good enough for the
average user

• If the informations being exchanged are sensitive to the point
that you don’t want any government agencies to look into
them, don’t

• If you are working on Apple 0days, you may also want to
avoid this communication channel :-)

• Apple, make a more transparent PKI and document the
protocol, and it could be considered the most practical and
secure real-time messaging system available

 contact@quarkslab.com I @quarkslab.com

Questions ?

