
Dissecting CSRF Attacks &
Defenses

Mike Shema

October 16, 2013

Cross Site Request Forgery

Identifying the confused, session-riding deputy.

Putting the attack in context.

Analyzing & implementing countermeasures.

Defending the browser.

2

WHAT

WHEN

WHY

HOW

User Agent

3

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="refresh" content="0;url=https://one.origin/">
 <link ref="prefetch" href="https://two.origin/resource">
</head>
<body>

 <iframe sandbox src="https://four.origin/content"></iframe>
 click here<a>
</body>
</html>

Cross-origin requests are an integral design
and expected behavior of HTML.

Double Agent
Secret Agent

CSRF Mechanism vs. Exploit

4

Force a victim’s browser to request a resource
of the attacker’s choosing.

<iframe src="https://web.site/article/comments/a/b/c/"></iframe>

The request affects the victim’s context with the
web app in a way that either benefits the attacker or
is detrimental to the victim.

https://target.site/changePassword?newPass=kar120c

Request Context

5

The attacker chooses an action to be performed.

The browser includes cookies to perform that
action against the target app under the victim’s
session context.

https://target.site/changePassword?newPw=kar120c

Two Senses of Forgery

Creation
SOP restricts reading the response from a cross-
origin request, not making the request.
Many elements automatically initiate a request.
XHR object can compose complex requests.

Counterfeit
Compose request with attacker’s choice of values.
The request triggers a behavior of the attacker’s
choice made under the victim’s context.

6

Request Creation

7

<form method="POST" action="changePassword">
<input type="password" name="newPass" value="">
<input type="password" name="confirmPass" value="">
<input type="submit">
</form> POST /changePassword HTTP/1.1

Host: web.site
User-Agent: Mozilla/5.0 ...
...
Cookie: sessid=12345
Connection: keep-alive

newPass=kar120c&confirmPass=kar120c

https://website/changePassword?newPass=kar120c&confirmPass=kar120c

GET /changePassword?newPass=kar120c&confirmPass=kar120c HTTP/1.1
Host: web.site
User-Agent: Mozilla/5.0 ...
...
Cookie: sessid=12345
Connection: keep-alive

<iframe frameborder="0" height="0" width="0"...

<iframe seamless height="0" width="0"...

Request Subterfuge

8

<img style="visibility:hidden"...

<iframe style="position:absolute; left:-1000px; top:-1000px"...

Risk Considerations

9

http://192.168.1.1/apply.cgi
current_page=Main_Analysis_Content.asp&
next_page=cmdRet_check.htm&next_host=192.168.1.1&
group_id=&modified=0&action_mode=+Refresh+&
action_script=&action_wait=&first_time=&preferred_lang=EN&
SystemCmd=nvram%20%show&
firmver=3.0.0.4&cmdMethod=ping&destIP=localhost&pingCNT=5

h*p://www.exploit-‐db.com/exploits/28652/

http://www.bing.com/search?q=deadliestwebattacks

Are You Experienced?

Fundamentally, we want to distinguish between a
user-intended action and a browser-initiated one.

Cross-origin requests that assume the victim’s
authorization are the problem (i.e. session riding).

Hence, a countermeasure might try to
...prevent the initiation of the request
...make it difficult to correctly compose the request
...separate the user’s context from the request

Authorized

10

Make requests harder to create.
CORS isolation

Make requests harder to counterfeit by including
entropy or secrets.

Double submit cookie
Anti-CSRF token (nonce)

Tie the request to the user’s session.
Separate authorization & authentication tokens

Castles Made of Sand

11

Secrets & Entropy

PRNG

hash(hash(hash(...(PRNG)...)))

hash(PRNG, salt)

HMAC-SHA256(PRNG, secret)
HMAC-MD5
HMAC-SHA512

12

sizeof(PRNG)

sizeof(PRNG)

sizeof(PRNG + salt)

sizeof(PRNG + secret)

PRNG & Entropy

“Deterministic”
Poor seeding
Poor algorithm
Exposed state

Cryptographically secure algorithms designed to
...self-measure entropy to improve seeding
...resist prediction, bias
...resist compromise in case of state exposure

13

srand(1);
$x = rand();

$x = sha256(rand());

Heuristics

14h*p://mathworld.wolfram.com/NoiseSphere.html

𝜃=2πXn

𝜙=πXn+1

𝜌=√Xn+2

Entropic Horror

BH2012 -- PRNG: Pwning Random Number
Generators
sjcl.random
openssl rand 32 -hex

15

https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
http://crypto.stanford.edu/sjcl/
http://crypto.stanford.edu/sjcl/
http://www.openssl.org/docs/apps/rand.html%23
http://www.openssl.org/docs/apps/rand.html%23

HMAC & Secrets

Something other than the default value
keyboard cat

Something outside a dictionary
1
123
secret
Shad0wfax

16

$./john --format=hmac-sha256 --wordlist=words.txt sids.john

$./hashcat-cli64.app -a 0 -m 1450 sids.hashcat words.txt

.gitignore

17

explore

OAUTH_CONSUMER_SECRET

session_secret

secret_token.rb

mongodb://admin

ssh://root@

hmac-‐sha256

...

http://www.phenoelit.org/blog/archives/2012/12/21/let_me_github_that_for_you/

http://nakedsecurity.sophos.com/2013/01/25/do-programmers-understand-private/

CSRF Exposes Weak Design

Password change mechanisms that don’t require
current password.

Missing authentication barriers for sensitive
actions.

e.g. check-out and shipping to known vs. new
address

Loose coupling of authentication, authorization,
and session.

18

Dangerous Design

GET/POST negligence and mismatch
form method modification
PHP $_GET vs. $_POST vs. $_REQUEST

Unrestricted redirection
e.g. https://web.site/page?returnUrl=https://CSRF/

“Link-based links”
e.g. https://web.site/page?resource=CSRF.html

19

Attack Payloads

Griefing
Actions detrimental to user
http://justdelete.me/

Manipulation
Upvotes/downvotes

Spamming
Messages from the user without authorization of user

20

POST http://stackoverflow.com/posts/6655321/vote/2 HTTP/1.1
Host: stackoverflow.com

fkey=d2aad1a4a5e8326b26eb82307f25a072

(press control+c to stop)

21

http://beefproject.com
http://beefproject.com
http://beefproject.com
http://beefproject.com
http://beefproject.com

Detection Methodologies

Pattern-based detection of token names
Security by regexity
Checks for presence, not effectiveness or
implementation

Active test
“Cookie Swap” between user session contexts
Determine enforcement, not predictability

22

Mobile Apps

Recreating vulns from first principles
Using HTTP instead of HTTPS
Not verifying HTTPS certs
But at least the apps are signed...

More areas to explore
Not a browser, but making HTTP requests
CSRF potential of malevolent ad banners

23

Wherever Browsers Roam

Does it speak HTTP(S)?
Gaming systems
Televisions
Embedded devices

Does it have a user context?
...or integration with social media?
...or control a security barrier?

24

Cross Origin Resource Sharing

Control the forgery (i.e. creation) of “non-
simple”, cross-origin requests

X-CSRF: 1

XCSRF /foo HTTP/1.1

25

CORS Isolation

Guarantees same Origin (or allowed cross-
Origin)

But only for “non-simple” XHR requests
Must start inspecting the Origin header

Limitations
Must be part of app’s design and implementation
Breaks “simple” cross-origin requests

26

<form id=”dragon”>

27

(function(){
"use strict";
$(document).ready(function() {
$("#dragon").submit(function(event) {
 $.ajax({
 url: "dragon.php",
 data: "foo",
 error: function(jqXHR, textStatus, errorThrown) {
 $("#results").html(textStatus + ", " + errorThrown);
 },
 headers: { "X-CSRF" : "1" },
 success: function(data) {
 $("#results").html(data);
 }
 });
 return false;
});

});

})();

Pre-Flight

28

HTTP/1.1 200 OK
Date: Wed, 16 Oct 2013 07:13:31 GMT
Server: Apache/2.2.25 (Unix)
X-Powered-By: PHP/5.3.27
Set-Cookie: PHPSESSID=mkpb5bn4cbp86orsjekmp6asb7; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Access-Control-Allow-Origin: http://web.site
Access-Control-Allow-Headers: X-CSRF
Access-Control-Max-Age: 10
Content-Length: 0
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/html; charset=utf-8

OPTIONS http://web.site/CsrfLab/CORS/dragon.php?act=increase&gems=1 HTTP/1.1
Host: web.site
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:24.0) Gecko/
20100101 Firefox/24.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Origin: http://evil.site
Access-Control-Request-Method: GET
Access-Control-Request-Headers: x-csrf
Connection: keep-alive

Content Security Policy

29

CSP: default-src 'self'

<input type="text" name="q" value="foo"
autofocus/onfocus=alert(9)//"">

CSP: default-src 'self' 'unsafe-inline'

<input type="text" name="q" value="foo"
autofocus/onfocus=alert(9)//"">

Speaking of CSP

<!doctype html>
<html>
<head>
<meta http-equiv="X-WebKit-CSP"
 content="img-src 'none'; report-uri
'https://csrf.target/page?a=1&b=2&c=3'">
</head>
<body>

</body>
</html>

30

Partial POST Forgery
POST /page?a=1&b=2&c=3 HTTP/1.1
Host: csrf.target
User-Agent: Mozilla/5.0 ...
Content-Length: 116
Accept: */*
Origin: null
Content-Type: application/x-www-form-urlencoded
Referer: http://web.site/HWA/ch3/csrf.html
Cookie: sessid=12345
Connection: keep-alive

document-url=http%3A%2F%2Fcsrf.target%2FHWA
%2Fch3%2Fcsrf.html&violated-directive=default-
src+%27none%27

31

32

ONE ATTACK AMONG MANY

Crosstown Traffic

HTML injection, cross-site scripting
It’s executing in Same Origin
CSRF countermeasures are intended to prevent
cross-origin attacks
Start using Content Security Policy

DNS, cache poisoning, sniffing, ...
Start using HSTS
Where did DNSSEC go?

33

Vuln Background Radiation

34

Total	 Scans

20	 months	 starRng	 November	 2011

0%

8%

15%

23%

30%

Insecure	 Flash/Scan
Insecure	 Java/Scan
Insecure	 Silverlight/Scan

1/5th !?

Plugins

Outside of SOP
Outside of privacy settings

Compose requests
Unrestricted header creation
Raw packets

Eternally insecure
To be replaced by HTML5, <canvas>, <audio>, <video>

35

... --- ...

AND THEY HAVE A PLAN.

36

Security of Sessions

Focus on the abuse of session context
Session-riding, confused deputy

Control when cookies accompany requests
initiated from a cross-origin resource

Similar to CORS enforcement of “non-simple”
requests
Isolate the user’s session context

37

Simplicity of Settings

Syntax like CSP, behavior like CORS
Simple behavior with fewer chances of mistakes
Leverage pre-flight as a permission check for
context

Don’t require changes to application code
Add headers via WAF
Provide more flexibility by opt-in to exceptions

38

Should Often Succeed

Don’t break the web, ease adoption
Ad banners
“first visit”, blank browsing context
Deal with domains & subdomains vs. Origins

Browsers have to support it
Old, unpatched browsers forsaken to the demons
of insecurity anyway

39

Some Ordinary Syntax

On the web application, define a policy:

Set-Cookie: cookieName=...
Content-Security-Policy:

 sos-apply=cookieName ‘self‘
 sos-apply=cookieName ‘any‘
 sos-apply=cookieName ‘isolate‘
 sos-apply=* ‘self’

40

Policies

self -- trigger pre-flight, cookie included only
from same origin unless given exception
any -- trigger pre-flight, cookie included unless
given exception
isolate -- no pre-flight, no exceptions. Cookie
only included from same Origin.

(?) sos-remove=cookieName to remove policy

41

Some Ordinary Syntax

If a cookie has a policy (or no policy), and a
request is generated by a resource from the same
Origin.

...work like the web works today.

If a cookie has a policy of ‘isolate’, and a request is
generated by a cross-origin resource.

...never include the cookie.

If a cookie has a policy of ‘any’ or ‘self ’, and a
request is generated by a cross-origin resource.

...make a pre-flight check
42

Why Pre-Flight?

Cookies apply site-wide (including subdomains!),
without granularity of resources.

The /path attribute is not a security boundary

An SOS policy instructs the browser for default
handling of a cookie.

A particular resource can declare an exception
by responding to the pre-flight.

43

Pre-Flight Request

[prereq] A policy of ‘any’ or ‘self ’
[prereq] Cross-origin resource initiates request

Browser makes CORS-like request:

OPTIONS http://web.site/resource?a=1&b=2 HTTP/1.1
Host: web.site
User-Agent: ...
Origin: http://evil.site
Access-Control-SOS: cookiename cookiename2
Connection: keep-alive
Content-Length: 0

44

Pre-Flight Response

Web app receives a pre-flight request.

Supply an expires value so the browser can cache
the response.

...if a policy should be enforced for the specific
resource:

HTTP 200 OK
Access-Control-SOS-reply: ‘allow’ | ‘deny’; expires=seconds

45

Pre-Flight Response

...if the resource is not exceptional, browser
follows established policy

‘any’ would include the cookie for cross-origin
‘self ’ would exclude the cookie for cross-origin

Benefits
Web app can enforce per resource, per cookie
Sees the Origin header
Expiration eases performance with caching

46

Two Sets

Policy applies to cookies for all resources (entire
Origin)
Policy can be adjusted by a resource
Pre-flight response shouldn’t leak information
about cookies for which it has a policy

If the client can’t ask for the right cookie, then no
response.
Respond with ‘deny’ if the cookie doesn’t exist

47

Remember

Browser tracks...
Cookies for which a policy has been applied.
Resources that respond to cross-origin requests with
exceptions to the policy.
Cookies and destination origin, source origin doesn’t
matter

Web App
Applies a policy at each Set-Cookie
Applies a policy at a bottleneck

48

Goals

Ease adoption
Familiar syntax
Small command set

Acknowledge performance
Cache pre-flight responses
Only track “all other origins” to origin, not pairs of
origins

49

The “WordPress Problem”

Strong anti-CSRF token is present in WordPress
trunk

WP plugins keep forgetting to use it
../wp-admin/admin.php?page=...

Must continually protect every new action
...or protect the /wp-admin/ directory

sos-apply=cookieName; ‘self ’

50

Mitigate Social Engineering

Should prevent situations where user is tricked
onto clicking a link/submitting a form on
attacker’s page (i.e. different origin) that submits
to targeted origin

Use X-Frame-Options to deal with clickjacking

51

If 6 Was 9

No secrets, no entropy
Easier on embedded devices, fewer mistakes

Enforcement by origin
Exception-based for flexibility
Shift state tracking from server to browser

Pre-flight can be handled by WAF
‘isolate’ and expire deal with overhead of pre-
flight

(Which is only for cross-origin anyway)

52

Imperfect

Much easier to isolate an origin than work with
cross-origin requests.

Decorates resources instead of decorating the
cookie.

53

When Old Becomes New

Update browsers
Still have to support legacy, although the window to the
past is shrinking
People still use old browsers for good reasons,
TorBrowser using FireFox ESR

Fix frameworks
Use cryptographically secure PRNG
Don’t reuse example passphrases
Use XHR brokering with custom headers
Separate authentication and authorization

54

Strong Foundations

Use HSTS

Use CORS isolation (i.e. “non-simple” requests)

Send an SOS

55

SIX:	 ALL	 OF	 THIS	 HAS	 HAPPENED	 BEFORE.
BALTAR:	 BUT	 THE	 QUESTION	 REMAINS,	 DOES	 ALL	 OF	 THIS	
HAVE	 TO	 HAPPEN	 AGAIN?

Thank You!

Contact @CodexWebSecurum

Content http://deadliestwebattacks.com

56

https://twitter.com/CodexWebSecurum
https://twitter.com/CodexWebSecurum
http://deadliestwebattacks.com
http://deadliestwebattacks.com
http://www.amazon.com/gp/product/159749951X/ref=as_li_ss_il?ie=UTF8&camp=1789&creative=390957&creativeASIN=159749951X&linkCode=as2&tag=aht3-20
http://www.amazon.com/gp/product/159749951X/ref=as_li_ss_il?ie=UTF8&camp=1789&creative=390957&creativeASIN=159749951X&linkCode=as2&tag=aht3-20
http://deadliestwebattacks.com
http://deadliestwebattacks.com
http://deadliestwebattacks.com
http://deadliestwebattacks.com
http://deadliestwebattacks.com

References
beefproject.com

crypto.stanford.edu/sjcl/

github.com/mutantzombie/SessionOriginSecurity

hashcat.net

media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf

research.microsoft.com/en-us/um/people/helenw/papers/racl.pdf

www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf

www.openwall.com/john/

www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

57

http://beefproject.com
http://beefproject.com
http://crypto.stanford.edu/sjcl/
http://crypto.stanford.edu/sjcl/
https://github.com/mutantzombie/SessionOriginSecurity
https://github.com/mutantzombie/SessionOriginSecurity
http://hashcat.net
http://hashcat.net
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
http://research.microsoft.com/en-us/um/people/helenw/papers/racl.pdf
http://research.microsoft.com/en-us/um/people/helenw/papers/racl.pdf
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf
http://www.adambarth.com/papers/2008/barth-jackson-mitchell-b.pdf
http://www.openwall.com/john/
http://www.openwall.com/john/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

