
(Malware) Analysis
Using Visualization

Hack in the Box, Kuala Lumpur 2013

Wes Brown
wbrown@ephemeralsecurity.com

Ephemeral Security

self.about
self.name = Wes Brown

self.company = { current: Ephemeral Security
 previous: ThreatGRID, Inc }

self.coolstuff = [Mosquito Remote Injectable VM,
 Malnet Malware Analysis LiveCD,
 Supercomputing Analysis of Malware]

self.proclivities = [Weird Functional Languages]

visualization.about

Visualization is the organization, rendering, and
presentation of data in a visual.

Meaningful visualization that has more purpose than to
impress management is very hard.

This workshop is intended to show how to use visualization
to analyze malware as well as other security topics, and to
provide tools to aid in this.

svforth.about
svforth.name

 Security Visualization FORTH

svforth.description

FORTH dialect with threads, remote procedure calls, and
access to platform language functions and libraries.

svforth.platforms = [JavaScript, Python]

svforth.sources = https://github.com/ephsec/svforth

forth.wtf?
Language of implementation shapes thought patterns, and
alter reasoning about a problem.

Lisp and other functional languages that allow high order
functions and lazy evaluations allow the passing of functions
that customize the behavior of the function being called.

Forth has a stack oriented nature and encourages a layered
approach to programming using short functions.

Visualization and analysis revolves around manipulation of
linear data that are query results, lending itself to stacks.

svforth.javascript
SVFORTH’s primary implementation langauge is JavaScript.

JavaScript’s use of closures and ability to pass anonymous
functions (lambdas) as arguments to functions makes
implementing a Forth trivial.

JavaScript runs in the browser, and has a rich set of libraries
revolving around visuals.

Author likes functional languages, and JavaScript really is a
functional language in Algol (C, Java) like costume.

svforth.python
SVFORTH also has an implementation in Python.

While SVFORTH.JS works and is used with Node.js for server-
side tasks, Python is more commonly available making it
more useful for the workshop.

Python also supports passing functions as arguments, and
functions as objects.

In some ways, Python implementation is cleaner due to
JavaScript’s stupidity with global values.

get(svforth)
Requirements

Modern HTML5 browser

Python (Optional)

Wireless Network

AP: ForthLand

Password: SVFORTH

http://svforth.forthland

learn(forth)
Stack Based (Reverse Polish Notation)

Push items to operate on onto stack

Forth words operate on stack, typically popping values
off the end.

Whitespace delimited tokens

Every Forth word can be redefined to something else,
including primitive stack operations if you are foolhardy
enough!

forth learn
Input Evaluate

d
Stack

10 20 30 * +
20 30 * + 10 10

30 * + 20 10, 20
* + 30 10, 20, 30
+ * 10, 600

+ 610
10 / 50 -

10 610 10
/ 61
50 61 50
- 11

forth.stack
word stack diagram description

pop (a b c) -- (a b) pops a value off the stack for current fn

push (a b c) -- (a b c d) pushes a new value onto the stack

drop (a b c) -- (a b) drops a value off the stack without using

dup (a b c) -- (a b c c) duplicates value at top of the stack

swap (a b c) -- (a c b) swaps top value on stack with value before

nip (a b c) -- (a c) removes value before top of stack

rot (a b c) -- (c a b) rotates entire stack

-rot (a b c) - (b c a) counter-rotates entire stack

depth (a b c) - (a b c 3) pushes current depth of stack onto stack

.s (a b c) -- (a b c) prints stack

forth.canvas

word stack diagram description

canvas (html-canvas) - () sets the current canvas operated upon

fillcolor (r g b) - () sets the current color used for drawing

rect (x1 y1 x2 y2) - () draws a rectangle on current canvas

word stack diagram description

rand (low high) - (rand) generates random number

word stack diagram description

loop loop a b c again marks the beginning of a loop block

again loop a b c again repeats loop block ad infinitium

word stack diagram description

: : word definition ; defines a Forth word terminated by ;

randrect.forth
word code

pick-color
: pick-color
 0 255 rand 0 255 rand 0 255 rand (red, green, blue)
 fillcolor ; (set our color)

draw-rect

: draw-rect
 0 800 rand 0 600 rand (begin coords)
 0 800 rand 0 600 rand (second coords)
 rect ; (draw our rectangle)

randrect

: randrect
 canvas pickcanvas (sets canvas on page)
 200 tokenresolution (every 200 tokens)
 begin
 pickcolor (pick a random color)
 putrect (draw a random rect)
 again

randrect.screenshot

SVFORTH Queries
Forth also makes a very nice query and filter language.

Queries fill the stack with results.

Filters remove items from the stack based on criteria.

Stack object are heterogenous so different types of data can
fill the same stack.

Pull 500 twitter and 500 facebook posts and filter for
#anonymous tags and then further filter for ‘loic’ mentions

twitter 500 from facebook 500 from #anonymous filter loic filter

Demo: SVFORTH Queries
This is not available in the source code, nor is there public
access to the data source being used.

Various data sources stored in a flat Postgres table.

Pastebin

Twitter

IRC

Production prototype for PacketNinjas.

forth.more
word stack diagram description

[[code block] a block of code treated as a stack object

exec code-block exec synchronously execute code block

rpc code-block rpc executes code block remotely on server

apply ds apply code-block applies code block or word to ds

word stack diagram description

get-url (url get-url) gets objects from server

get-binary (url get-binary) obtains URL as binary object on stack

word stack diagram description

xml-to-ds (xml-text xml-to-ds) converts XML to data structure

ds-get (ds index ds-get) gets index from data structure

ds-get-all (ds index ds-get-all) iteratively pushes index from ds

getmalware.forth
word code

get-rss-links

: get-rss-links
 xml-to-ds (convert our XML RSS to ds)
 channel ds-get (grab the ‘channel’ element)
 item ds-get (grab the ‘item’ element)
 link ds-get-all ; (grab all ‘item’ elements)

get-rss-binaries

: get-binary-links
 get-url (fetch our RSS feed URL)
 get-rss-links (parse our links out of RSS)
 apply get-binary ; (grab our links as binaries)

word code

get-malware
: get-malware
 http://svforth/malware.rss get-rss-binaries ;

svforth.so-far
Forth makes it very simple to extend the existing abilities
with small pieces of functiona code.

Very much like Unix command line and pipes -- do one
thing, do it very well.

We have retrieved links via RSS to malware binaries and
fetched them.

In SVFORTH’s dialect, arbitrary and heterogenous objects
including binaries can be in the stack.

Binary Representation
Representing binaries visually - how?

Simplistic view is as 8-bit integers.

value 0-255

can be represented in 24-bit RGB space as grayscale by
assigning the same value across Red, Green, Blue

word stack diagram description

get-binary (url get-binary) grab url as a binary on the stack

paint-binary (binary paint-binary) draws grayscale 8-bit representation

svforth.view.8bit
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe get-binary paint-binary

Raw Grayscale Not Useful

Grayscale view of 8-bit is not very useful visually.

Can see some areas where it is empty.

Mostly noise to human eyes.

Useful for machine algorithms to cluster based on unique
features.

How to make it more useful?

Detour: Color Theory (RGB)
Red, Green, Blue (RGB) is the de-facto standard for
representation of colors at the machine and display level.

Web-safe colors = (6^3, 216 colors)

24-bit color space (8^3, 16,777,216 colors)

By setting values for red, green, and blue, we have colors.

RGB is not how we perceive or think of colors!

If we map our binaries to RGB directly, it doesn’t work.

Detour: Color Theory (HSV)
HSV - Hue, Saturation, Value

Hue - Color

Saturation - Colorfulness

Value - Brightness

Work with HSV colors, convert to RGB and back.

Allows humans to think in terms of ‘brighter’, ‘darker’.

svforth.color
word stack diagram description

red (red) -- (h s v) push h, s, v value for red

green (green) -- (h s v) push h, s, v value for green

blue (blue) -- (h s v) push h, s, v value for blue

lighten (h s v lighten) lighten h s v

darken (h s v darken) darken h s v

saturate (h s v saturate) increase saturation of h s v

desaturate (h s v desaturate) decrease saturation of h s v

rotcolor (h s v rotcolor) rotate along the color wheel

-rotcolor (h s v -rotcolor) counter-rotate along the color wheel

rgb-to-hsv (binary rgb-to-hsv) convert triplets of r, g, b to h, s, v

hsv-to-rgb (binary hsv-to-rgb) convert triplets of h, s, v to r, g, b

Visual Encoding
Now that we can map to HSV -- what can we encode to this
based on the information in a binary file?

PE Sections

Windows PE executables have distinct sections.

Entropy

How much randomness along a set of bytes -- detect if
encrypted or compressed

Visual Encoding (pt 2)

Also ... what if we represented more meaningful data than
just a byte stream?

Like, say, a stream of disassembled opcodes with
arguments stripped out?

The majority of Intel opcodes lay within the 8-bit
bounday, and the rest can be safely discarded.

Example 1: 00b8dc50625...
8-bit aligned values to grayscale

8-bit disassembly opcodes to grayscale

8-bit disassembly opcodes overlaid with PE sections colorized

Example 2: 00d0071a86...
8-bit aligned values to grayscale

8-bit disassembly opcodes to grayscale

8-bit disassembly opcodes overlaid with PE sections colorized

Example 3: 0038fd97d96...
8-bit aligned values to grayscale

8-bit disassembly opcodes to grayscale

8-bit disassembly opcodes overlaid with PE sections colorized

Example 4: 231ee964ade..
8-bit aligned values to grayscale

8-bit disassembly opcodes to grayscale

8-bit disassembly opcodes overlaid with PE sections colorized

Side-by-Side: 8-bit aligned

Side-by-Side: Opcodes

Side-by-Side: PE Colorized

Intriguing Conclusions

One thing that really stands out is that there were binaries
that were fundamentally the same, structurally, despite
being dramatically different sizes.

This is something that jumps out on visual inspection, with
the right view of the data. Comparing a grayscale raw
binary image would not have made the difference or
similarity apparent here.

Much More Work To Do

Ongoing process to incorporate visualization shown into
SVFORTH.

Production usage of SVFORTH in a security analysis context.

Optimization of JavaScript code and image handling.

Object views of stack, allowing pivots on views.

Cool Stuff To Do
asm.js

Traditional Forth was itself a compiler, compiling Forth
words to the native assembler of the platform.

Why not take this in that direction, and use asm.js, which
is a subdialect of JavaScript?

D3.js

More easy visualization and historgram by using D3

Thanks To

Daniel Clemens of PacketNinjas for allowing me the freedom
to explore interesting solutions to his problem.

Daniel Nowak of Spectral Security for his valuable feedback
and insights into visualization and security analysis.

Questions?

Any final questions, feedback?

Thank You

Source code of SVFORTH so far is available online.

https://github.com/ephsec/svforth

Paper covering SVFORTH is available in GitHub markdown:

https://github.com/ephsec/svforth/blob/master/doc/
svforth.md

wbrown@ephemeralsecurity.com

