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BIOS Rootkits 

§ Very powerful due to being the first code executed on the 
platform.  

§ Can leverage System Management Mode, which is the most 
powerful mode of execution on the x86 platform.1  

§ Survives OS reinstalls. 

§ However, we don’t see many “in the wild” BIOS Rootkits. 
–  Less portable and more difficult to implement than their OS level 

counterparts. 
–  Perhaps we will see more in the future as the OS becomes more 

locked down. 

1 There is a lot of prior work on leveraging SMM for nefarious purposes, I encourage you 
 to look it up… 
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Recent Noteworthy BIOS Security Results 

§  “Hardware Backdooring Is Practical” by J. Brossard 
– Contrary to previous thinking, BIOS rootkits are not that difficult to 

implement thanks to opensource firmware projects. 
§  “A Tale Of One Software Bypass Of Windows 8 Secure Boot” by 

Bulygin et al. 
–  If you can get onto the flash chip, you can defeat Secure Boot. 

§   “BIOS Chronomancy” by Butterworth et al.  
–  BIOS Rootkits can defeat TPM detection. 
–  BIOS Rootkits can survive BIOS reflashes. 
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Related Work 

§  “Attacking Intel BIOS” by Rafal Wojtczuk and Alexander 
Tereshkin 
–  Exploited memory corruption vulnerability in parsing of unsigned 

custom bootup picture in signed Intel BIOS. 
–  Allowed reflashing BIOS with arbitrary (malicious) image despite 

signed enforcement. 
–  Blackhat USA 2009 
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Protecting your BIOS 

§  The previous results are dependent on an attacker being able to 
get a foothold on the SPI flash chip that contains your platform 
firmware (BIOS or UEFI). 

§ Signed firmware update enforcement protects against malicious 
writes to the flash chip. 

§ Most new systems offer or even require signed firmware update 
enforcement.1 

1 More on this later… 
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How is this implemented? 

§  Intel provides a number of protection mechanisms that can 
“lock down” the flash chip. 
–  You can read all about these in the ICH documentation for your 

chipset. 
–  These protections have remained relatively static recently. 

§  It’s then up to the OEM to leverage these flash lock down 
mechanisms to roll their own signed bios enforcement. 
–  This includes correctly configuring a surprisingly complicated set of 

flash lock down controls… 
–  As well as implementing an update routine that doesn’t contain any 

bugs… 
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Follow Along 

§  I encourage you to download a tool my colleagues and I have 
written to read out your flash lock down configuration. 
–  http://www.mitre.org/capabilities/cybersecurity/overview/

cybersecurity-blog/copernicus-question-your-assumptions-about 
– Direct link to binary: http://www.mitre.org/sites/default/files/

copernicus_pr.zip 
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Protected Range SPI Flash Protections 

§ Protected Range registers can provide write protection to the 
flash chip. 

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html  
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HSFS.FLOCKDN 

§ HSFS.FLOCKDN bit prevents changes to the Protected Range 
registers once set. 
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BIOS_CNTL 

§  The above bits are part of the BIOS_CNTL register on the ICH. 
§ BIOS_CNTL.BIOSWE bit enables write access to the flash chip. 
§ BIOS_CNTL.BLE bit provides an opportunity for the OEM to 

implement an SMM routine to protect the BIOSWE bit. 
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SMM BIOSWE protection (1 of 2) 

§ Here the attacker tries to set the BIOS Write Enable bit to 1 to 
allow him to overwrite the BIOS chip. 

Ring0 Code BIOS_CNTL 

SMM 

 BIOS_CNTL.BIOSWE = 1 
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SMM BIOSWE protection (2 of 2) 

§  The write to the BIOSWE bit generates an SMI. 
§  The SMI immediately writes 0 back to the BIOSWE bit. 
§  The end result is that BIOSWE is always 0 when non-SMM code 

is running. 

Ring0 Code BIOS_CNTL 

SMM 

 BIOS_CNTL.BIOSWE = 1 

SMI# 

 BIOS_CNTL.BIOSWE=0 
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BIOSWE Protection Demo (1 of 2) 

§ Set_bioswe is a simple program that attempts to set the 
BIOSWE bit in the BIOS_CNTL register.  

§ BIOS_CNTL = 0xB implies BIOSWE is set. 
§ BIOS_CNTL = 0xA implies BIOSWE is not set. 
§ Notice that our attempt to set BIOSWE=1 in the above output 

has failed as SMM is protecting the BIOSWE value. 
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BIOSWE Protection Demo (2 of 2) 

§ Attempting to write to the BIOS chip using the flashrom open 
source utility fails because BIOS_CNTL=0xA (BIOSWE=0), 
implying write access is not allowed to the BIOS chip.1 

1 Command: flashrom –p internal:laptop_I_want_a_brick,ich_spi_mode=swseq –w bios.bin 
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Intel Protections Summary 

§  The Protected Range and BIOS_CNTL registers provide 
duplicative protection of the SPI flash chip that contains the 
platform firmware. 

§  These protections are reset upon platform reset, and must be 
correctly configured by the platform firmware during power on. 

  



| 16 |  

OEM BIOS Update Routines 

§ We will use Dell BIOS as a case study in how OEM’s use the Intel 
flash protection mechanisms to implement signed BIOS 
enforcement. 

§  The following code is from the Dell Latitude E6400 BIOS, but the 
BIOS update routine in question is shared among 20+ other Dell 
models. 
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Dell E6400 BIOS Update 

1.  Firmware update binary (“HDR”) is copied to kernel memory 
–  Default method is to packetize the HDR file into “rbu packets” 
–  HDR contains more than just the BIOS update (Keyboard 

Controller, Management Engine, too) 
2.  A bit in CMOS byte 0x78 is flipped 
3.  The system is rebooted 
4.  BIOS sees CMOS bit is flipped and triggers an SMI to execute 

the SMM BIOS Update routine 
5.  After the BIOS Update routine has occurred, the appropriate 

Intel flash protection mechanisms are set so that no more 
writes to the flash chip can occur. 
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BIOS Update Routine (1 of 2) 

$RPK… Packet=1, size=0x400 

Copyright 2011 Dell Inc.. A29 

$RPK… Packet=N, size=0x100 

EB 39 00 00 00 FF FF FF FF … 

$RPK… Packet=2, size=0x1000 

00 00 FF FF FF FF FF… 

OS Kernel Driver 

•  The	
  Opera)ng	
  System	
  packe)zes	
  the	
  new	
  
BIOS	
  image	
  across	
  the	
  address	
  space.	
  Each	
  
packet	
  has	
  a	
  33	
  byte	
  rbu_packet	
  header	
  that	
  
describes	
  the	
  contents	
  and	
  order	
  of	
  the	
  BIOS	
  
image	
  informa)on	
  the	
  packet	
  contains.	
  

•  A	
  bit	
  is	
  then	
  flipped	
  in	
  CMOS	
  to	
  indicate	
  to	
  
the	
  BIOS	
  upon	
  the	
  next	
  reboot	
  that	
  an	
  update	
  
is	
  pending.	
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BIOS Update Routine (2 of 2) 

$RPK…	
  Packet=N,	
  size=0x100	
  

EB	
  39	
  00	
  00	
  00	
  FF	
  FF	
  FF	
  FF	
  FF	
  …	
  

$RPK…	
  Packet=N-­‐1,	
  size=0x1000	
  

00	
  00	
  FF	
  FF	
  FF	
  FF	
  FF…	
  •  Upon	
  reboot,	
  the	
  System	
  Management	
  Mode	
  
update	
  rou)ne	
  scans	
  for	
  the	
  individual	
  rbu	
  
packets	
  and	
  uses	
  them	
  to	
  reconstruct	
  the	
  
complete	
  BIOS	
  image.	
  	
  

•  SMM	
  then	
  verifies	
  the	
  reconstructed	
  BIOS	
  
image	
  is	
  signed	
  by	
  Dell	
  before	
  wri)ng	
  to	
  the	
  
flash	
  chip.	
  

System	
  Management	
  Mode	
  RAM	
  
SMM	
  Update	
  Rou)ne	
  

Copyright	
  2011	
  Dell	
  Inc.	
  A29..	
  
FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  

…	
  
…	
  

EB	
  39	
  00	
  00	
  FF	
  FF	
  FF	
  FF	
  FF	
  FF	
  
	
  	
  



| 20 |  

Attacker Objective and Plan 

§ Reflash BIOS chip with arbitrary image despite signed BIOS 
enforcement. 

§ Method: find a memory corruption vulnerability in the parsing of 
the BIOS update information (RBU packets). This will allow us to 
seize control of SMM and reflash the BIOS chip at will. 

§  The memory corruption vulnerability must occur before the 
signature on the bios update image is checked. 

§ SMM parses the 33 byte rbu_packet header that describes 
metadata about the BIOS update image. This parsing occurs 
before the signature check. 
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Attack Surface 

http://linux.dell.com/libsmbios/main/RbuLowLevel_8h-source.html 
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Packet Parsing 

§ SMM first locates the RBU packet by scanning for an ASCII 
signature upon page aligned boundaries. 

§ Once located, members of the RBU packet are stored in an SMM 
data area for use in later calculations… 
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Curious GEOR? 

§ When reconstructing the BIOS image from the rbu packets, SMM 
writes an initialization string “GEOR” to the destination memory 
space where the BIOS image is being reconstructed…. 
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RBU Packet Copied 

§ Eventually the portion of the BIOS image described by the RBU 
packet is copied to the reconstruction location in memory. 

§ Notice the size parameter (ecx) for the inline memcpy (rep movsd) is 
derived from attacker data (g_pktSizeMinusHdrSize). 
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RBU Packet Parsing Vulnerability 

§  In fact, the copy destination and copy source are also both 
derived from attacker data read in from the current rbu_packet.  

§  This is an exploitable buffer overflow. 
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Lack of Mitigations 

§ System Management Mode is missing all of the traditional 
exploit mitigations you would expect to find in modern 
applications. 

§ No ASLR, NX, stack canaries, and so on…. 
§  This means we can pursue any target with our overwrite, such 

as the return address for the rbu packet copying function… 
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Exploiting the Vulnerability 

§  There are actually a number of constraints on the RBU packet 
data that make exploiting this buffer overflow tricky.  
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Constraints Overview 

§ Our copy destination must point to an area pre-initialized with the 
“GEOR” string. 

§ Copy_dest must be lower in memory than the return address. 
§ We can’t overwrite too much lest we die in the inline memcpy and 

never return.   
§ Copy source must be positioned such that attacker controlled 

data in the address space ends up overwriting the saved return 
address. 

§ Others…. 
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More Problems 

§  The source, destination and size operands are all derived from the 
same rbu_packet members. 

§ Changing one operand, changes the others. 
§ All of the constraints previously mentioned must be satisfied. 
§ Exploitation of this vulnerability can be modeled as a constraints 

solving problem. 
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Constraints Corollary 

§ An initialization routine populates the “GEOR” string at the 
expected copy dest location under “normal” circumstances. 

§  In order to pass the totalDataSize sanity check, we set totPkts to 1, 
forcing totalDataSize to 0. 

§  This means the expected “GEOR” string won’t naturally occur in 
the address space, and we will have to inject it somehow to satisfy 
the *copy_dest = “GEOR” constraint. 
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Faux GEOR 

§  The vulnerable memcpy will only execute if the copy destination 
points to a location containing this GEOR string. 

§ We use a Windows kernel driver that performs memory mapped i/o 
to write the GEOR string as high up in memory as possible, to 
allow us to force copy_dest to be within striking distance of the 
return address we want to overwrite.  

§  Like the BIOS update process, we are abusing the fact RAM 
remains intact during a soft reboot so the GEOR strings we wrote 
will remain in the address space.  
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RBU Packet Solution 

§ With all those constraints in mind, we brute force an rbu_packet 
configuration that allows us to pass the sanity checks and 
overwrite the return address gracefully. 
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Malicious BIOS Update 

$RPK..	
  Packet=0x83f9,	
  size=0xfffe	
  
Shellcode	
  
Shellcode	
  

…	
  
Shellcode	
  

•  The	
  unusually	
  large	
  packet	
  size	
  and	
  packet	
  
sequence	
  number	
  cause	
  the	
  packet	
  
reconstruc)on	
  area	
  to	
  overflow	
  into	
  SMRAM.	
  	
  

•  This	
  allows	
  us	
  to	
  overwrite	
  a	
  return	
  address	
  
inside	
  of	
  SMRAM	
  and	
  gain	
  control	
  of	
  EIP	
  while	
  
in	
  the	
  context	
  of	
  the	
  BIOS	
  update	
  rou)ne.	
  

System	
  Management	
  Mode	
  RAM	
  SMM	
  Update	
  Rou)ne	
  

Packet	
  Reconstruc)on	
  Space	
  
Shellcode	
  
Shellcode	
  
Shellcode	
  

….	
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PoC Demonstration Video 
http://youtu.be/V_ea21CrOPM 
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Vulnerability Conclusion 

§  The vulnerability allows an attacker to take control of the BIOS 
update process and reflash the BIOS with an arbitrary image 
despite the presence of signed bios enforcement. 

§ CVE-2013-3582 
§ We suspect other firmware update routines also contain 

vulnerabilities because: 
–  They were probably developed before signed BIOS enforcement 

was even a consideration. 
–  It is difficult to locate and reverse engineer the update code due to 

the proprietary nature of BIOS images, thus these routines have 
likely seen little (if any) peer review. 

§  Locating and exploiting a vulnerability in the Dell BIOS update 
routine was quite difficult, perhaps that is an easier way… 
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Attacking the Intel Protections 

§ As a reminder, the BIOS_CNTL and Protected Range/FLOCKDN 
registers are the primary protections against arbitrary flash 
writes. 

§  Interestingly, it seems as though most OEM’s opt to rely entirely 
on the BIOS_CNTL register for flash protection. 
– Of the 5197 systems that implemented signed BIOS enforcement 

in our enterprise environment, 4779 relied exclusively on 
BIOS_CNTL for protection! 

–  Approximately 92% of the systems we surveyed don’t configure 
Protected Range registers! 

§  This entangles the security of SMRAM with the security of the 
flash chip in a dangerous way. 
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An Old Bug Revisited 

§  In 2009 Invisible Things Lab and Duflot et al. identified an attack 
that abused Intel architecture caching features to execute 
arbitrary code in the context of System Management Mode 
(SMM)1 2. 

§  The ITL/Duflot cache poisoning attack was originally thought to 
be a temporary attack on System Management RAM (SMRAM); 
any attacker code injected into SMRAM would be flushed by a 
platform reset. 

§ However, on some systems the cache poisoning attack can lead 
to an arbitrary reflash of the BIOS chip.  
–  Because the BIOS is responsible for instantiating SMRAM, this 

would allow the attacker permanent residence in SMM. 

1 “Attacking SMM Memory via Intel Cache Poisoning” by Rafal Wojtczuk and Joanna Rutkowska 
2 “Getting into SMRAM: SMM Reloaded” by L. Duflot, O. Levillain, B. Morin and O. Grumelard. 
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Cache Poisoning Attack Overview (1 of 2) 

§ SMRAM is only writeable or readable by the CPU when it is 
executing in the context of SMM. Any attempt to ready SMRAM 
outside of SMM will be blocked by the Memory Controller Hub 
(MCH). 

§  The default caching policy for SMRAM is uncacheable; reads 
and writes happen directly to and from RAM, and are not stored 
in the cache. 
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Cache Poisoning Attack Overview (2 of 2) 

§ However, It is possible to program the MTRR’s such that 
SMRAM is “Write Back” cacheable. 

§ An attacker can then pollute the cache entries corresponding to 
SMRAM by writing malicious code to the memory range 
associated with SMRAM. 

§ Although these changes will not actually be reflected in SMRAM, 
they will be reflected in the cache lines for the SMRAM memory 
locations. 

§ When the CPU next enters into SMM, it will fetch the SMM code 
from the SMRAM cache entries (instead of SMRAM actual). 

§  This results in arbitrary code execution in the context of SMM. 
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Cache Attack (1 of 2) 

§  In this case, SMRAM is based at DFF00000. 
§  First the attacker sets the SMRAM region to WriteBack 

cacheable using the MTRRs. 
§ Next the attacker pollutes the cache lines corresponding to 

SMRAM by attempting to write to SMRAM locations. 

CPU Cache 
 
 
 
 
 
 

Location Contents 
DFF00000 badc0de 

C1000 E9 FF 00  
F0000 00 00 00 

RAM 
 
 
 
 
 
 
 
 
 
 

Location Contents 
A0000 
A1000 
… 

C1000 
… 

DFF00000 

FF FF FF 
F1 00 1B 

… 
E9 FF 00 

… 
SMM code 

CPU 

 DFF00000= badc0de 
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Cache Attack (2 of 2) 

§  Finally the attacker generates a System Management Interrupt 
(SMI#) to force the CPU to enter SMM and subsequently use the 
polluted cache entries. 

§  The attacker is now executing arbitrary code in the context of 
the super privileged SMM. 

CPU Cache 
 
 
 
 
 
 

Location Contents 
DFF00000 badc0de 

C1000 E9 FF 00  
F0000 00 00 00 

RAM 
 
 
 
 
 
 
 
 
 
 

Location Contents 
A0000 
A1000 
… 

C1000 
… 

DFF00000 

FF FF FF 
F1 00 1B 

… 
E9 FF 00 

… 
SMM code 

CPU 

 EIP=DFF00000 
Executing badc0de… 

SMI# 
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BIOSWE Cache Attack 

§ We pollute the SMI entry point with an immediate return from 
SMM instruction. 

§  This will result in SMM failing to protect BIOSWE from being set. 

CPU Cache 
 
 
 
 
 
 

Location Contents 
DFF00000 0F AA2 

C1000 E9 FF 00  
F0000 00 00 00 

RAM 
 
 
 
 
 
 
 
 
 
 

Location Contents 
A0000 
A1000 
… 

C1000 
… 

DFF00000 

FF FF FF 
F1 00 1B 

… 
E9 FF 00 

… 
SMM code 

CPU 

 DFF00000= RSM1 

1 RSM is the return from system management opcode 
2 0F AA are the opcodes for the RSM instruction 
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Disabled BIOSWE protection (1 of 2) 

§ Again the attacker tries to set the BIOS Write Enable bit to 1 to 
allow him to overwrite the BIOS chip. 

Ring0 Code BIOS_CNTL 

SMM 

 BIOS_CNTL.BIOSWE = 1 
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Disabled BIOSWE protection (2 of 2) 

§ An SMI is generated on the write as before, but this time SMM 
just immediately returns instead of resetting the BIOSWE bit to 
0. 

Ring0 Code BIOS_CNTL 

SMM 

 OK: BIOS_CNTL.BIOSWE = 1 
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Disabled BIOSWE Protection Demo 

§ We are able to set the BIOSWE bit (BIOS_CNTL = 0xB), and 
subsequently reflash the BIOS chip with an arbitrary image. 

§  This bypasses the signed firmware update requirement which is 
supposed to prevent arbitrary flash overwrites. 
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Poison Reflash Bug Conclusion 

§ Currently reported to CERT as VU#255726. 
§  This bug has been largely fixed on newer systems by the 

introduction of “SMM Range Registers” which when 
programmed correctly prevent the SMM Cache Poisoning 
Attack. 

§  Important takeaway: 
– Due to many OEM’s sole reliance on BIOS_CNTL protection of the 

flash chip, it follows that any vulnerabilities that allow you to modify 
SMRAM can be leveraged to reflash the BIOS. 
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Unified Extensible Firmware Interface 

§ Does UEFI solve these problems? 
– No. The underlying Intel flash protection mechanisms are the 

same. Many vendors are still relying only on BIOS_CNTL register 
for protection, and hence are vulnerable to any SMRAM 
compromises that may occur. 

–  Vendor’s are still implementing their own custom firmware update 
routines. 

–  There are even UEFI systems shipping with completely unlocked 
flash chips… 

§  In some ways, UEFI makes things easier for an attacker… 
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UEFI Reversing is Easier 

§ UEFI Firmware comes in a standard “firmware volume” which 
you can parse to quickly find relevant code.1  

1 EFIPWN: https://github.com/G33KatWork/EFIPWN 
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Disturbing Trend 

§  Lots and lots of code is getting put into SMM. 
§ An exploitable bug in any of this may lead to a firmware reflash 

bug. 
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Unpatched Vulnerability 

§ Demo 
§ Reported to CERT 
§ Effects multiple vendors 
§ VU #291102 
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Conclusion 

§ OEM’s should be using the Protected Range registers, but many 
of them are not. 

§ Sole reliance on BIOS_CNTL for flash protection entangles the 
security of SMM with the security of the flash chip. 

§ Vulnerabilities lurking in OEM firmware update routines can 
allow arbitrary reflashes of the system firmware. 

§  These issues are UEFI/BIOS agnostic. 
§  There are still new UEFI systems shipping with unlocked flash 

chips! 



| 52 |  

Acknowledgements 

§ Rafal Wojtczuk  
–  Breaking ground in this area 
– Helpful email discussion on topic 

§ Rick Martinez 
– Dell contact for BIOS related security issues 
– Great vendor for researchers to work with 

§  Bruce Monroe 
–  Intel contact  
–  Strong interest in general BIOS/UEFI/Intel security issues! 
–  Currently coordinating the release of other issues 


