
| 1 |

Defeating Signed BIOS Enforcement

§  Corey Kallenberg
§  John Butterworth
§  Sam Cornwell
§  Xeno Kovah

| 2 |

BIOS Rootkits

§ Very powerful due to being the first code executed on the
platform.

§ Can leverage System Management Mode, which is the most
powerful mode of execution on the x86 platform.1

§ Survives OS reinstalls.

§ However, we don’t see many “in the wild” BIOS Rootkits.
–  Less portable and more difficult to implement than their OS level

counterparts.
–  Perhaps we will see more in the future as the OS becomes more

locked down.

1 There is a lot of prior work on leveraging SMM for nefarious purposes, I encourage you
 to look it up…

| 3 |

Recent Noteworthy BIOS Security Results

§  “Hardware Backdooring Is Practical” by J. Brossard
– Contrary to previous thinking, BIOS rootkits are not that difficult to

implement thanks to opensource firmware projects.
§  “A Tale Of One Software Bypass Of Windows 8 Secure Boot” by

Bulygin et al.
–  If you can get onto the flash chip, you can defeat Secure Boot.

§  “BIOS Chronomancy” by Butterworth et al.
–  BIOS Rootkits can defeat TPM detection.
–  BIOS Rootkits can survive BIOS reflashes.

| 4 |

Related Work

§  “Attacking Intel BIOS” by Rafal Wojtczuk and Alexander
Tereshkin
–  Exploited memory corruption vulnerability in parsing of unsigned

custom bootup picture in signed Intel BIOS.
–  Allowed reflashing BIOS with arbitrary (malicious) image despite

signed enforcement.
–  Blackhat USA 2009

| 5 |

Protecting your BIOS

§  The previous results are dependent on an attacker being able to
get a foothold on the SPI flash chip that contains your platform
firmware (BIOS or UEFI).

§ Signed firmware update enforcement protects against malicious
writes to the flash chip.

§ Most new systems offer or even require signed firmware update
enforcement.1

1 More on this later…

| 6 |

How is this implemented?

§  Intel provides a number of protection mechanisms that can
“lock down” the flash chip.
–  You can read all about these in the ICH documentation for your

chipset.
–  These protections have remained relatively static recently.

§  It’s then up to the OEM to leverage these flash lock down
mechanisms to roll their own signed bios enforcement.
–  This includes correctly configuring a surprisingly complicated set of

flash lock down controls…
–  As well as implementing an update routine that doesn’t contain any

bugs…

| 7 |

Follow Along

§  I encourage you to download a tool my colleagues and I have
written to read out your flash lock down configuration.
–  http://www.mitre.org/capabilities/cybersecurity/overview/

cybersecurity-blog/copernicus-question-your-assumptions-about
– Direct link to binary: http://www.mitre.org/sites/default/files/

copernicus_pr.zip

| 8 |

Protected Range SPI Flash Protections

§ Protected Range registers can provide write protection to the
flash chip.

http://www.intel.com/content/www/us/en/chipsets/6-chipset-c200-chipset-datasheet.html

| 9 |

HSFS.FLOCKDN

§ HSFS.FLOCKDN bit prevents changes to the Protected Range
registers once set.

| 10 |

BIOS_CNTL

§  The above bits are part of the BIOS_CNTL register on the ICH.
§ BIOS_CNTL.BIOSWE bit enables write access to the flash chip.
§ BIOS_CNTL.BLE bit provides an opportunity for the OEM to

implement an SMM routine to protect the BIOSWE bit.

| 11 |

SMM BIOSWE protection (1 of 2)

§ Here the attacker tries to set the BIOS Write Enable bit to 1 to
allow him to overwrite the BIOS chip.

Ring0 Code BIOS_CNTL

SMM

 BIOS_CNTL.BIOSWE = 1

| 12 |

SMM BIOSWE protection (2 of 2)

§  The write to the BIOSWE bit generates an SMI.
§  The SMI immediately writes 0 back to the BIOSWE bit.
§  The end result is that BIOSWE is always 0 when non-SMM code

is running.

Ring0 Code BIOS_CNTL

SMM

 BIOS_CNTL.BIOSWE = 1

SMI#

 BIOS_CNTL.BIOSWE=0

| 13 |

BIOSWE Protection Demo (1 of 2)

§ Set_bioswe is a simple program that attempts to set the
BIOSWE bit in the BIOS_CNTL register.

§ BIOS_CNTL = 0xB implies BIOSWE is set.
§ BIOS_CNTL = 0xA implies BIOSWE is not set.
§ Notice that our attempt to set BIOSWE=1 in the above output

has failed as SMM is protecting the BIOSWE value.

| 14 |

BIOSWE Protection Demo (2 of 2)

§ Attempting to write to the BIOS chip using the flashrom open
source utility fails because BIOS_CNTL=0xA (BIOSWE=0),
implying write access is not allowed to the BIOS chip.1

1 Command: flashrom –p internal:laptop_I_want_a_brick,ich_spi_mode=swseq –w bios.bin

| 15 |

Intel Protections Summary

§  The Protected Range and BIOS_CNTL registers provide
duplicative protection of the SPI flash chip that contains the
platform firmware.

§  These protections are reset upon platform reset, and must be
correctly configured by the platform firmware during power on.

| 16 |

OEM BIOS Update Routines

§ We will use Dell BIOS as a case study in how OEM’s use the Intel
flash protection mechanisms to implement signed BIOS
enforcement.

§  The following code is from the Dell Latitude E6400 BIOS, but the
BIOS update routine in question is shared among 20+ other Dell
models.

| 17 |

Dell E6400 BIOS Update

1.  Firmware update binary (“HDR”) is copied to kernel memory
–  Default method is to packetize the HDR file into “rbu packets”
–  HDR contains more than just the BIOS update (Keyboard

Controller, Management Engine, too)
2.  A bit in CMOS byte 0x78 is flipped
3.  The system is rebooted
4.  BIOS sees CMOS bit is flipped and triggers an SMI to execute

the SMM BIOS Update routine
5.  After the BIOS Update routine has occurred, the appropriate

Intel flash protection mechanisms are set so that no more
writes to the flash chip can occur.

| 18 |

BIOS Update Routine (1 of 2)

$RPK… Packet=1, size=0x400

Copyright 2011 Dell Inc.. A29

$RPK… Packet=N, size=0x100

EB 39 00 00 00 FF FF FF FF …

$RPK… Packet=2, size=0x1000

00 00 FF FF FF FF FF…

OS Kernel Driver

•  The	
 Opera)ng	
 System	
 packe)zes	
 the	
 new	

BIOS	
 image	
 across	
 the	
 address	
 space.	
 Each	

packet	
 has	
 a	
 33	
 byte	
 rbu_packet	
 header	
 that	

describes	
 the	
 contents	
 and	
 order	
 of	
 the	
 BIOS	

image	
 informa)on	
 the	
 packet	
 contains.	

•  A	
 bit	
 is	
 then	
 flipped	
 in	
 CMOS	
 to	
 indicate	
 to	

the	
 BIOS	
 upon	
 the	
 next	
 reboot	
 that	
 an	
 update	

is	
 pending.	

| 19 |

BIOS Update Routine (2 of 2)

$RPK…	
 Packet=N,	
 size=0x100	

EB	
 39	
 00	
 00	
 00	
 FF	
 FF	
 FF	
 FF	
 FF	
 …	

$RPK…	
 Packet=N-­‐1,	
 size=0x1000	

00	
 00	
 FF	
 FF	
 FF	
 FF	
 FF…	
 •  Upon	
 reboot,	
 the	
 System	
 Management	
 Mode	

update	
 rou)ne	
 scans	
 for	
 the	
 individual	
 rbu	

packets	
 and	
 uses	
 them	
 to	
 reconstruct	
 the	

complete	
 BIOS	
 image.	
 	

•  SMM	
 then	
 verifies	
 the	
 reconstructed	
 BIOS	

image	
 is	
 signed	
 by	
 Dell	
 before	
 wri)ng	
 to	
 the	

flash	
 chip.	

System	
 Management	
 Mode	
 RAM	

SMM	
 Update	
 Rou)ne	

Copyright	
 2011	
 Dell	
 Inc.	
 A29..	

FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	

…	

…	

EB	
 39	
 00	
 00	
 FF	
 FF	
 FF	
 FF	
 FF	
 FF	

	
 	

| 20 |

Attacker Objective and Plan

§ Reflash BIOS chip with arbitrary image despite signed BIOS
enforcement.

§ Method: find a memory corruption vulnerability in the parsing of
the BIOS update information (RBU packets). This will allow us to
seize control of SMM and reflash the BIOS chip at will.

§  The memory corruption vulnerability must occur before the
signature on the bios update image is checked.

§ SMM parses the 33 byte rbu_packet header that describes
metadata about the BIOS update image. This parsing occurs
before the signature check.

| 21 |

Attack Surface

http://linux.dell.com/libsmbios/main/RbuLowLevel_8h-source.html

| 22 |

Packet Parsing

§ SMM first locates the RBU packet by scanning for an ASCII
signature upon page aligned boundaries.

§ Once located, members of the RBU packet are stored in an SMM
data area for use in later calculations…

| 23 |

Curious GEOR?

§ When reconstructing the BIOS image from the rbu packets, SMM
writes an initialization string “GEOR” to the destination memory
space where the BIOS image is being reconstructed….

| 24 |

RBU Packet Copied

§ Eventually the portion of the BIOS image described by the RBU
packet is copied to the reconstruction location in memory.

§ Notice the size parameter (ecx) for the inline memcpy (rep movsd) is
derived from attacker data (g_pktSizeMinusHdrSize).

| 25 |

RBU Packet Parsing Vulnerability

§  In fact, the copy destination and copy source are also both
derived from attacker data read in from the current rbu_packet.

§  This is an exploitable buffer overflow.

| 26 |

Lack of Mitigations

§ System Management Mode is missing all of the traditional
exploit mitigations you would expect to find in modern
applications.

§ No ASLR, NX, stack canaries, and so on….
§  This means we can pursue any target with our overwrite, such

as the return address for the rbu packet copying function…

| 27 |

Exploiting the Vulnerability

§  There are actually a number of constraints on the RBU packet
data that make exploiting this buffer overflow tricky.

| 28 |

Constraints Overview

§ Our copy destination must point to an area pre-initialized with the
“GEOR” string.

§ Copy_dest must be lower in memory than the return address.
§ We can’t overwrite too much lest we die in the inline memcpy and

never return.
§ Copy source must be positioned such that attacker controlled

data in the address space ends up overwriting the saved return
address.

§ Others….

| 29 |

More Problems

§  The source, destination and size operands are all derived from the
same rbu_packet members.

§ Changing one operand, changes the others.
§ All of the constraints previously mentioned must be satisfied.
§ Exploitation of this vulnerability can be modeled as a constraints

solving problem.

| 30 |

Constraints Corollary

§ An initialization routine populates the “GEOR” string at the
expected copy dest location under “normal” circumstances.

§  In order to pass the totalDataSize sanity check, we set totPkts to 1,
forcing totalDataSize to 0.

§  This means the expected “GEOR” string won’t naturally occur in
the address space, and we will have to inject it somehow to satisfy
the *copy_dest = “GEOR” constraint.

| 31 |

Faux GEOR

§  The vulnerable memcpy will only execute if the copy destination
points to a location containing this GEOR string.

§ We use a Windows kernel driver that performs memory mapped i/o
to write the GEOR string as high up in memory as possible, to
allow us to force copy_dest to be within striking distance of the
return address we want to overwrite.

§  Like the BIOS update process, we are abusing the fact RAM
remains intact during a soft reboot so the GEOR strings we wrote
will remain in the address space.

| 32 |

RBU Packet Solution

§ With all those constraints in mind, we brute force an rbu_packet
configuration that allows us to pass the sanity checks and
overwrite the return address gracefully.

| 33 |

Malicious BIOS Update

$RPK..	
 Packet=0x83f9,	
 size=0xfffe	

Shellcode	

Shellcode	

…	

Shellcode	

•  The	
 unusually	
 large	
 packet	
 size	
 and	
 packet	

sequence	
 number	
 cause	
 the	
 packet	

reconstruc)on	
 area	
 to	
 overflow	
 into	
 SMRAM.	
 	

•  This	
 allows	
 us	
 to	
 overwrite	
 a	
 return	
 address	

inside	
 of	
 SMRAM	
 and	
 gain	
 control	
 of	
 EIP	
 while	

in	
 the	
 context	
 of	
 the	
 BIOS	
 update	
 rou)ne.	

System	
 Management	
 Mode	
 RAM	
 SMM	
 Update	
 Rou)ne	

Packet	
 Reconstruc)on	
 Space	

Shellcode	

Shellcode	

Shellcode	

….	

| 34 |

PoC Demonstration Video
http://youtu.be/V_ea21CrOPM

| 35 |

Vulnerability Conclusion

§  The vulnerability allows an attacker to take control of the BIOS
update process and reflash the BIOS with an arbitrary image
despite the presence of signed bios enforcement.

§ CVE-2013-3582
§ We suspect other firmware update routines also contain

vulnerabilities because:
–  They were probably developed before signed BIOS enforcement

was even a consideration.
–  It is difficult to locate and reverse engineer the update code due to

the proprietary nature of BIOS images, thus these routines have
likely seen little (if any) peer review.

§  Locating and exploiting a vulnerability in the Dell BIOS update
routine was quite difficult, perhaps that is an easier way…

| 36 |

Attacking the Intel Protections

§ As a reminder, the BIOS_CNTL and Protected Range/FLOCKDN
registers are the primary protections against arbitrary flash
writes.

§  Interestingly, it seems as though most OEM’s opt to rely entirely
on the BIOS_CNTL register for flash protection.
– Of the 5197 systems that implemented signed BIOS enforcement

in our enterprise environment, 4779 relied exclusively on
BIOS_CNTL for protection!

–  Approximately 92% of the systems we surveyed don’t configure
Protected Range registers!

§  This entangles the security of SMRAM with the security of the
flash chip in a dangerous way.

| 37 |

An Old Bug Revisited

§  In 2009 Invisible Things Lab and Duflot et al. identified an attack
that abused Intel architecture caching features to execute
arbitrary code in the context of System Management Mode
(SMM)1 2.

§  The ITL/Duflot cache poisoning attack was originally thought to
be a temporary attack on System Management RAM (SMRAM);
any attacker code injected into SMRAM would be flushed by a
platform reset.

§ However, on some systems the cache poisoning attack can lead
to an arbitrary reflash of the BIOS chip.
–  Because the BIOS is responsible for instantiating SMRAM, this

would allow the attacker permanent residence in SMM.

1 “Attacking SMM Memory via Intel Cache Poisoning” by Rafal Wojtczuk and Joanna Rutkowska
2 “Getting into SMRAM: SMM Reloaded” by L. Duflot, O. Levillain, B. Morin and O. Grumelard.

| 38 |

Cache Poisoning Attack Overview (1 of 2)

§ SMRAM is only writeable or readable by the CPU when it is
executing in the context of SMM. Any attempt to ready SMRAM
outside of SMM will be blocked by the Memory Controller Hub
(MCH).

§  The default caching policy for SMRAM is uncacheable; reads
and writes happen directly to and from RAM, and are not stored
in the cache.

| 39 |

Cache Poisoning Attack Overview (2 of 2)

§ However, It is possible to program the MTRR’s such that
SMRAM is “Write Back” cacheable.

§ An attacker can then pollute the cache entries corresponding to
SMRAM by writing malicious code to the memory range
associated with SMRAM.

§ Although these changes will not actually be reflected in SMRAM,
they will be reflected in the cache lines for the SMRAM memory
locations.

§ When the CPU next enters into SMM, it will fetch the SMM code
from the SMRAM cache entries (instead of SMRAM actual).

§  This results in arbitrary code execution in the context of SMM.

| 40 |

Cache Attack (1 of 2)

§  In this case, SMRAM is based at DFF00000.
§  First the attacker sets the SMRAM region to WriteBack

cacheable using the MTRRs.
§ Next the attacker pollutes the cache lines corresponding to

SMRAM by attempting to write to SMRAM locations.

CPU Cache

Location Contents
DFF00000 badc0de

C1000 E9 FF 00
F0000 00 00 00

RAM

Location Contents
A0000
A1000
…

C1000
…

DFF00000

FF FF FF
F1 00 1B

…
E9 FF 00

…
SMM code

CPU

 DFF00000= badc0de

| 41 |

Cache Attack (2 of 2)

§  Finally the attacker generates a System Management Interrupt
(SMI#) to force the CPU to enter SMM and subsequently use the
polluted cache entries.

§  The attacker is now executing arbitrary code in the context of
the super privileged SMM.

CPU Cache

Location Contents
DFF00000 badc0de

C1000 E9 FF 00
F0000 00 00 00

RAM

Location Contents
A0000
A1000
…

C1000
…

DFF00000

FF FF FF
F1 00 1B

…
E9 FF 00

…
SMM code

CPU

 EIP=DFF00000
Executing badc0de…

SMI#

| 42 |

BIOSWE Cache Attack

§ We pollute the SMI entry point with an immediate return from
SMM instruction.

§  This will result in SMM failing to protect BIOSWE from being set.

CPU Cache

Location Contents
DFF00000 0F AA2

C1000 E9 FF 00
F0000 00 00 00

RAM

Location Contents
A0000
A1000
…

C1000
…

DFF00000

FF FF FF
F1 00 1B

…
E9 FF 00

…
SMM code

CPU

 DFF00000= RSM1

1 RSM is the return from system management opcode
2 0F AA are the opcodes for the RSM instruction

| 43 |

Disabled BIOSWE protection (1 of 2)

§ Again the attacker tries to set the BIOS Write Enable bit to 1 to
allow him to overwrite the BIOS chip.

Ring0 Code BIOS_CNTL

SMM

 BIOS_CNTL.BIOSWE = 1

| 44 |

Disabled BIOSWE protection (2 of 2)

§ An SMI is generated on the write as before, but this time SMM
just immediately returns instead of resetting the BIOSWE bit to
0.

Ring0 Code BIOS_CNTL

SMM

 OK: BIOS_CNTL.BIOSWE = 1

| 45 |

Disabled BIOSWE Protection Demo

§ We are able to set the BIOSWE bit (BIOS_CNTL = 0xB), and
subsequently reflash the BIOS chip with an arbitrary image.

§  This bypasses the signed firmware update requirement which is
supposed to prevent arbitrary flash overwrites.

| 46 |

Poison Reflash Bug Conclusion

§ Currently reported to CERT as VU#255726.
§  This bug has been largely fixed on newer systems by the

introduction of “SMM Range Registers” which when
programmed correctly prevent the SMM Cache Poisoning
Attack.

§  Important takeaway:
– Due to many OEM’s sole reliance on BIOS_CNTL protection of the

flash chip, it follows that any vulnerabilities that allow you to modify
SMRAM can be leveraged to reflash the BIOS.

| 47 |

Unified Extensible Firmware Interface

§ Does UEFI solve these problems?
– No. The underlying Intel flash protection mechanisms are the

same. Many vendors are still relying only on BIOS_CNTL register
for protection, and hence are vulnerable to any SMRAM
compromises that may occur.

–  Vendor’s are still implementing their own custom firmware update
routines.

–  There are even UEFI systems shipping with completely unlocked
flash chips…

§  In some ways, UEFI makes things easier for an attacker…

| 48 |

UEFI Reversing is Easier

§ UEFI Firmware comes in a standard “firmware volume” which
you can parse to quickly find relevant code.1

1 EFIPWN: https://github.com/G33KatWork/EFIPWN

| 49 |

Disturbing Trend

§  Lots and lots of code is getting put into SMM.
§ An exploitable bug in any of this may lead to a firmware reflash

bug.

| 50 |

Unpatched Vulnerability

§ Demo
§ Reported to CERT
§ Effects multiple vendors
§ VU #291102

| 51 |

Conclusion

§ OEM’s should be using the Protected Range registers, but many
of them are not.

§ Sole reliance on BIOS_CNTL for flash protection entangles the
security of SMM with the security of the flash chip.

§ Vulnerabilities lurking in OEM firmware update routines can
allow arbitrary reflashes of the system firmware.

§  These issues are UEFI/BIOS agnostic.
§  There are still new UEFI systems shipping with unlocked flash

chips!

| 52 |

Acknowledgements

§ Rafal Wojtczuk
–  Breaking ground in this area
– Helpful email discussion on topic

§ Rick Martinez
– Dell contact for BIOS related security issues
– Great vendor for researchers to work with

§  Bruce Monroe
–  Intel contact
–  Strong interest in general BIOS/UEFI/Intel security issues!
–  Currently coordinating the release of other issues

