

LTE Pwnage: Hacking HLR/HSS and MME Core Network Elements

P1 Security

LTE ENVIRONMENT

LTE Network Overview

Corporate & Mobile Data risk increased

- LTE from attackers perspective
- All IP always on always vulnerable?
 - Spear-Phishing
 - Botnets & Malware
 - Flooding
 - Trojan & Backdoors
- IPv6 renders NAT protection inefficient
- Split Handshake TCP attacks prevents IPS and Antivirus
- Very familiar architecture for attackers: ATCA, Linux
- Intricate and new protocols: Diameter, S1, X2, GTP

2G 3G to LTE: Reality and Legacy Priority One Security

2 G	3G	LTE	
BTS	Node B	eNode B	
BSC	merged into Node B	merged into eNode B	
MSC / VLR	RNC	MME, MSC Proxy	
HLR	HLR, IMS HSS, HE	LTE SAE HSS, SDR/SDM	
STP	STP, SG	Legacy STP	
GGSN	GGSN	PDN GW	
SGSN	SGSN	MME/SGW	
IN	IN/PCRF	PCRF	
RAN Firewall	RAN Firewall	SeGW	

User data content: LTE User Plane P1 Security Priority One Security

UE					S-GW
PS service	eNo	deB			PS service
PDCP	PDCP	GTP-U UDP		Router/ SecGW	GTP-U UDP
RLC	RLC	IP IPsec		IP IPsec	IP
MAC	MAC			Ethernet	
LTE RF	LTE RF	Ethernet			Ethernet
S1-UP					

LTE Network Attack Surface

- Full IP only?
 - No: full IP double exposure
- Packets (PS Domain)
 - 2x attack surface
 - GTP still present
 - S1AP/X2AP new
- Circuits (CS Domain)
 - 2x attack surface
 - SIGTRAN & SS7 will stay for many years
 - IMS & Diameter

3G and LTE together

CSFB vs. VOLTE vulnerability attack surface

CSFB

- CS Fall Back from 4G to 3G
- Past is present
- SS7 and SIGTRAN stack vulnerabilities (DoS, spoof, ...)

VOLTE

- Whole new attack surface
- New APN, new network to hack, new servers,
- Closer to the Core Network == more serious vulns
- IMS (CSCF = SIP server, DNS, ...)
 - Standard? No...

ISUP injection in SIP through VOLTE

Yes, SIP... known... but...

Internet SIP + SS7 ISUP == SIP-I and SIP-T == ISUP Injection!

CSFB Attack surface through MSC Proxy and SS7 + SIGTRAN

- All SIGTRAN attack surface exposed
- All SS7 attack surface exposed
- Most dangerous:
 - Logical Denial of Service attacks
 - SSP-based SCCP DoS (P1 CVID#480)
 - TFP-based SS7 DoS (P1 CVID#481)
 - Equipment Crash/Denial of Service attacks
 - Ericsson MSC Crash DoS (P1 VID#330)
 - NSN HLR Crash DoS (P1 VID#148)
 - Ericsson STP Crash DoS (P1 VID#187)

Severity	Critical		
	NGHLR SS7 stack software is not robust and suffers from Remote Denial of Service.		
Impact	Enables any person sending malicious SCCP traffic to the HLR to crash it. This includes the whole international SS7 network as HLRs need always to be globally reachable.		

Reliability for telco

- Ability to cope with X million of requests
- Not Ability to cope with malformed traffic

GSM MAP primitive MAP_FORWARD_ACCESS_SIGNALLING enables RAN signaling injection

Severity	Medium		
Description	This GSM MAP MSU "MAP_FORWARD_ACCESS_SIG NALLING" forwards any content to the Radio Access Network (RAN).		
Impact	The result is that some external entities may send or spoof MAP_FORWARD_ACCESS_SIGN ALLING MSUs to target MSC GTs and have the vulnerable MSCs to inject this signaling into the radio network (typically RANAP).		

- Spoof and inject radio signaling
- As if it was coming from Radio Network

Fun Anti-forensics

- Same attack as VID#187 "
- Also crash Ericsson traffic monitoring log analysis forensic tools (P1 VKD VID#213)
- Code sharing between enforcement and forensic tools

```
C:\>alogfind -a 0002 -b 0400 -e 20121020 -g 20121022 -t alp
PrcUnhandledExceptionFilter : UNHANDLED EXCEPTION!!! (In alogfind)
```

3G and LTE together

Peer to Peer Radio Access Network

- X2AP
 - eNodeB's
 - Peer to Peer
- Translation
 - Every base station can talk to every other
 - Network attack surface increase
 - Total spread into the RAN network
- Operator-wide L2 network
 - L2 attacks, less defense in depth, scanning only blocked by size of network
 - Did GTP disappear? No

User data btw eNBs: LTE User Plane

LTE RAN Overview

Pwning OSS:

L2 network mistakes always happen

- Can't catch it with multiple overlapping /8 networks: automate!
- From any eNodeB to the NMS
- From any eNodeB to any eNodeB
 - You can bet on insecure provisioning
- American example & Remote misconfiguration

eNodeB Hardware Attacks

Ericsson RBS 6602

> DUS (2G+3G+4G) & DUL (4G)

Radio

- → Uplink to DWDM / Optical net
- → Local Ethernet ports (not TDM anymore)
 - → Hardware (in)security system

LTE: Equipment Attack surface increase

- Diameter (New)
 - Added surface
 - New code, maturity in question
 - Very few commercial fuzzers support it
 - Even less really trigger bugs in Diameter (depth pbm)
- S1/X2AP (New)
 - GTP + MAP within two completely new protocols
 - With encapsulation of user traffic (Non Access Stratum protocol)
- What could possibly go wrong?

Comparing the SS7 and Diameter Protocol Stacks

MAP

CAP

INAP

TCAP

SCCP

MTP

S6, S9, S13, Gx,Gy,Gz Cx,Dx,Sh,Dh

Rx,Rf,Ro,

Diameter

SCTP

IP

Diameter Proxy Agent

Diameter Relay Agent

- Diameter is the successor of Radius, originally used for AAA
- Diameter acts as an "envelope" for applications (= interfaces)

Mapping of SS7 to IP protocols

- CAP* 2G/3G CAMEL prepaid functions in future via Diameter, VAS functions of CAMEL via SIP (= INAP)
- MAP* AAA and mobility in future via Diameter, Messaging (SMS) via SIP

Diameter Protocol (diameter... P... Profile: ss7

		1		1			1	
No.		Time	cgGT	cgSSN	cdGT	cdSSN	Protocol Le	
		212.059173					DIAMETER	262 cmd=Capabilities-ExchangeRequest(257) flags=R appl=Diameter Common
		212.078804					DIAMETER	294 cmd=Capabilities-ExchangeAnswer(257) flags= appl=Diameter Common M
		212.080569					DIAMETER	146 cmd=Device-WatchdogRequest(280) flags=R appl=Diameter Common Messag
	8/	212.084998					DIAMETER	178 SACK cmd=Device-WatchdogAnswer(280) flags= appl=Diameter Common Me
◄								
▼ Di		r Protocol						
		Lon: 0x01						
	_	th: 200 s: 0x80						
	_		Capabilities-E	- - - - - - - - - - - - - - - - - - -				
		icationId: 0	Capabitities-	xcriange				
			ier: 0x00204a1	6				
			ier: 0x6770000					
		ver In: 84]	10.1. 0.00,,000.	,,,				
D			264) l=31 f=-M-	val=backend.ea	p.testbed.aaa	ì		
				1- val=eap.testb				
				=-M- val=127382				
D	AVP:	Host-IP-Addre	ss(257) l=14 1	=-M- val=192.16	8.105.20 (192	2.168.105.20)		
D	AVP:	Host-IP-Addre	ss(257) l=26 1	=-M- val=fde4:2	2c6e:55c4:105:	a00:27ff:fe0b	:7859 (fde4:2d	6e:55c4:105:a00:27ff:fe0b:7859)
D								
D	AVP:	Product-Name(269) l=20 f=	- val=freeDiame	eter			
				2 f= val=100				
				.2 f=-M- val=NO_				
D	AVP:	Acct-Applicat	ion-Id(259) l=	=12 f=-M- val=Di	ameter Base A	ccounting (3)		
0030	00 c	d8 e7 Ob 81 46	00 00 00 00	00 00 00 00 01	00F			
0040						J.gp		
0050 0060					6e@.	backen e stbed.aa		
0070						eap.te		
0080						a@.		
0090								
00a0						@		
00b0						' x Y		
00d0						eeDiamet		
00e0								
00f0				00 00 01 03 40	.+@	@ .		
0100	00 0	OC 00 00 00 03		15 15 11				

Auditor bias #1:

Open standards doesn't mean vision

- Diameter
 - Nearly every parameter is optional
- Result
 - Nobody knows what is a valid combination ...
 - To test / fuzz / inject
- Combinatorial explosion
 - Sequence / Dialogue / Flow
 - AVP combination
 - AVP values
 - Fuzzed parameter
- Even manufacturer don't know how to successfully instrument the Device Under Test
- Fuzzer Support is not Fuzzer successful triggering

Auditor bias #2: Fuzzing is as deep as fuzzer goes

- And fuzzer never go deep enough
 - Commercial fuzzer
 - 0 trigger/1000 iteration
 - Standard own fuzzer
 - 13 triggers/1000 iterations
- Need target-specific development
 - Customized own fuzzer:
 - 85 triggers/1000 iterations

LTE: New risk with Diameter

500N:

- Diameter information network dissemination
- Diameter awesomeness
 - distribution/centralization
 - its own evil side
- Present in many database
 - HSS, SDM/SDR, CUD
- The goal was to centralize
- The result is one more database

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

SITUATION:

THERE ARE 15 COMPETING STANDARDS.

LTE Huawei Specific

- USN = SGSN + MME
- UGW = SeGW + SGW + PDN GW / PGW

Pwning LTE HSS: C++ SQL Injection everywhere

LTE HSS Pwning methodology

- OSS is considered Core
- It is accessible by eNodeBs
 - Sometime: Network filtering mistakes
 - Often: Allowed for Provisionning
- OSS can connect to HSS
 - HSS exports too many services
 - Mux/Tunnel kind of thinking
 - one port == many services

LTE EPC functional plane, no OAM P1 Security Priority One Security Application **PCEF** SPR **HPCRF** VPCRF Function S9 Trusted non 3GPP Access Gx Rx Sp Gxa BBERF Gxx **PCRF** Gxb PDN MSC/VLR ePDG SGSN HSS Gx S4 S₆a Gxc Trusted non S3 SGs S₂b 3GPP Access E-UTRAN **EPCs** S₂b 3GPP S-GW P-GW eNB MME UE AAA Server Uu SII-C S5/S8 S2c S103 MME **HSGW**

Add OAM: complexity explosion

Auditor bias #3: Manual vision is always incomplete

- Need some automation
- 200 APNs * 16 million IPs == need to have dedicated scanner
 - Each valid GTP tunnel is a new 16 millions IPs to scan
 - Address space explosion
- You CANNOT do it manually
 - You CANNOT do it without specific scanners

Pwning MME: Hardcoded encryption keys

```
package com.huawei.install.util;
     import java.io.PrintStream;
     public final class DES-
10
11 0 {-
12
         public DES()
13
14 0
             key\_schedule = new int[32];
15
16
             IV0 = 0;
             IV1 = 0;
17
18
                                   substring(0, 8).qetBytes();
             byteKey =
19
20
         public char[] encrypt(byte tmpsrc[], int srcOff, byte dest[], int destOff, int len, boolean bCrypt)
21
22 0
23
             int out[] = new int[2];
24
             int iv0 = IV0;
             int iv1 = IV1;
26
             int end = srcOff + len;
```


Demo

Legacy PS Interfaces of interest to LTE

- Gi : Interface from GGSN to Internet
- Gn: Interface between SGSN and other SGSN and (internal) GGSN
- Gp: Interface between Internal SGSN and external GGSN (GRX used here)

eDNS vs iDNS

- Leaks to Internet
- Passive DNSmon
- Leaks to GPRS
- Leaks to 3G data
- Leaks to LTE EPC

Legacy GPRS / UMTS

- GRX
- TLD / Domain .gprs
- Quite monolithic:
 - APN
 - RAI
 - rai<RAI>. mnc08. mcc204.gprs
- Only APNs and "some" network element

IMS DNS

- 3gppnetwork.org
- Supports and lists all Network Element
 - -LAC
 - -RAC
- Examples
 - rac<RAC>.lac<LAC>.mnc08.mcc204.gprs

LTE EPC DNS

- Same as IMS DNS but extended
- Supports and lists most SAE EPC Network Elements
 - MME
 - SGW
- Examples

mmec<MMEC>.mmegi<MMEGI>.mme.epc.mnc99.mcc208.3gppnetwork.org

Pwning from LTE mobile

- Infrastructure Reverse path protection
- LTE Mobile data access
 - RFC1918 leaks (Sometime)
 - Datacom IP infrastructure access (Now more often)

42

Pwning from external: Direct MML access from Internet

- Pwning from external without any reverse path trick.
- Shodan doesn't work on these
- MML attack surface exposed

```
84.XXX.XXX.XXX:+++
                           UGW-HUAWEI
                                                                     <-- LTE
                                               2013-04-09 02:38:14
    84.XXX.XXX.XXX:+++
                           UGW-HUAWEI
                                               2013-04-09 07:51:29
                                                                     <-- LTE
    200.XX.XXX.XXX:+++
                          GGSN-HUAWEI
                                               2013-04-09 04:31:47
    200.XX.XXX.XXX:+++
                          GGSN-HUAWEI
                                               2013-04-09 04:31:47
    202.XX.XXX.XXX:+++
                          HUAWEI UMG8900
                                               2013-04-09 06:13:50
    202.XX.XXX.XXX:+++
                          HUAWEI UMG8900
                                               2013-04-09 05:01:03
    202.XX.XXX.XXX:+++
                                                 2013-04-09 04:56:49
                          HUAWEI UMG8900
    202.XX.XXX.XXX:+++
                          HUAWEI UMG8900
                                                 2013-04-09 05:04:31
    202.XX.XXX.XXX:+++
                                                 2013-04-09 05:01:18
                          HUAWEI UMG8900
10
    202.XX.XXX.XXX:+++
                          HUAWEI UMG8900
                                                 2013-04-09 05:02:29
11
    203.XX.XXX.XXX:+++
                          HUAWEI UMG8900
                                                 2013-04-09 09:55:35
    201.XX.XXX.XXX:+++
                                               2013-04-09 08:40:38
                          UGW-HUAWEI
                                                                     <-- LTE
13
    219.XX.XXX.XXX:+++
                           PDSN-HUAWEI
                                               2013-04-09 08:02:12
     200.XX.XXX.XXX:+++
                           PDSN-HUAWEI
                                               2013-04-09 04:25:21
```


Auditor bias #4: Testbed is always more secure

- Testbed is more secure than production
 - Legacy impact
 - Scalability impact
- Audit is often only permitted in testbed
 - Liability
 - Potential for Denial of Service
- Result
 - Attackers advantage
 - Production goes untested

Auditor bias #4: Testbed is always more secure

- Testbed is more secure than production
 - Legacy impact
 - Scalability impact
 - There's always something more on the prod network
- Audit is often only permitted in testbed
 - Liability
 - Potential for Denial of Service
- Result
 - Attackers advantage
 - Production goes untested

Technical Capacity & Knowledge issue

- Who
 - Can audit all new LTE protocols and legacy protocols
 - Has expertise on the architectures & vendors equipment
- Guarantee
 - Scanning quality
 - Coverage on all protocols & arch (CSFB, IMS, Hybrid, SCharge)
- Cover all perimeters and accesses
 - APNs
 - GRX & IPX accesses
 - Split DNS
 - User plane and control plane

Conclusion

- LTE is supposed to be built with security
 - Difference between standardization and real security
 - Network Equipment Vendors are still lagging
- Opening up of the technology
 - Good: deeper independent security research
- Operators
 - Still disinformed by vendors
 - Security through obscurity in 2013! Unbelievable!
 - Some are getting proactive

Contact:

Philippe.Langlois@p1sec.com

http://www.p1sec.com

THANKS!

SEE YOU AT: HACKITO ERGO SUM – MAY 2-4 2013 PARIS, FRANCE

BACKUP SLIDES

Interfaces

Interface	Endpoints						
S6a	MME	HSS					
S6d	HSS	vSGSN (Rel 8)					
S13	MME	EIR					
S9	hPCRF	vPCRF					
Rx	PCRF	AF, P-CSCF					
Gx	PGW	PCRF					
Gy	PGW	OCF					
Gz	PGW	OFCF					
Сх	I/S-CSCF	HSS					
Sh	AF, IP-SM-GW	HSS					
Rf	P/I/S-CSCF, AF	OFCF					
Ro	S-CSCF, AF	OCF					
Rc	OCF	ABMF					
Re	OCF	RF					

LTE Network

Previous LTE services & missions

- LTE Complete infrastructure audit
- Huawei LTE EPC Core Network audit & vulnerability research
- LTE CSFB infrastructure integration with legacy audit
 - both Diameter, S1, X2 and SS7 integration for CS FallBack
- Ericsson eNodeB audit and product security review
- Diameter security audit on LTE & IMS Core

LTE audit milestones

- 1. External LTE testing, scan & audit (blackbox)
 - LTE new elements
 - Integration with legacy
- 2. LTE eRAN onsite audit
 - eNodeB, enrollment, configuration & PSR/PVR
 - OSS & OAM
- 3. LTE EPC Core Network audit
 - MME
 - S-GW & PDN GW
 - HSS
 - PCRF
- 4. MBSS Minimum Baseline Security Standard
 - LTE eRAN: eNodeB, SeGW, OSS & enrollment servers
 - LTE EPC: MME, S-GW, PCRF, HSS, PDN GW, MSC Proxy

INTERFACES

Interfaces

Interface	Endpoints						
S6a	MME	HSS					
S6d	HSS	vSGSN (Rel 8)					
S13	MME	EIR					
S9	hPCRF	vPCRF					
Rx	PCRF	AF, P-CSCF					
Gx	PGW	PCRF					
Gy	PGW	OCF					
Gz	PGW	OFCF					
Сх	I/S-CSCF	HSS					
Sh	AF, IP-SM-GW	HSS					
Rf	P/I/S-CSCF, AF	OFCF					
Ro	S-CSCF, AF	OCF					
Rc	OCF	ABMF					
Re	OCF	RF					

ADDRESSING IN LTE

Core Network: IP addresses everywhere

- Everything uses IP addresses
 - User: UE,
 - RAN: eNodeB, SeGW
 - EPC: MME, HSS, SGW, PGW
- IPv4
- IPv6 is actually really being supported

Telecom-specific addressing

• End user addresses:

```
- GUTI,
```

- IMSI,

— ...

GUTI

- Globally Unique Temporary Identity (GUTI)
 - Allocated by the MME to the UE
- GUTI = GUMMEI + M-TMSI
 - GUMMEI = Globally Unique MME ID
 - GUMMEI = MNC + MCC + MMEI
 - MMEI = MMEGI + MMEC
 - » MMEGI = MME Group ID
 - » MMEC = MME Code
 - M-TMSI == MME TMSI
- GPRS/UMTS P-TMSI -> LTE M-TMSI
- S-TMSI = MMEC + M-TMSI

GUTI in Pictures

RAI/P-TMSI mapping to GUTI

GUTI mapping to P-TMSI

TAC and RNC ID

	RNC ID								
Octets	8	7	6	5	4	3	2	1	
1	MCC digit 2				MCC digit 1				
2	MNC digit3				MCC digit3				
3	MNC digit2				MNC digit 1				
4	Location Area Code (LAC)								
5	Location Area Code (LAC)								
6	Routing Area Code (RAC)								
7 to 8	RNCID								

	eNodeB ID								
Octets	8	7	6	5	4	3	2	1	
1	MCC digit 2				MCC digit 1				
2	MNC digit3				MCC digit3				
3	MNC digit 2				MNC digit 1				
4	Spare				eNodeBID				
5	eNodeB ID								
6	eNodeB ID								
7 to 8	Tracking Area Code (TAC)								

ADRESS MAPPING IN DNS

Legacy GPRS / UMTS

- GRX
- TLD / Domain .gprs
- Quite monolithic:
 - APN
 - RAI
 - rai<RAI>. mnc08. mcc204.gprs

IMS DNS

- 3gppnetwork.org
- Supports
 - LAC
 - -RAC
- Examples
 - rac<RAC>.lac<LAC>.mnc08.mcc204.gprs

LTE EPC DNS

- Same as IMS DNS but extended
- Supports
 - MME
 - SGW
- Examples

mmec<MMEC>.mmegi<MMEGI>.mme.epc.mnc99.mcc 208.3gppnetwork.org

TECHNOLOGY BACKGROUNDER

LTE Data Terminology

- GTP = GPRS Tunneling Protocol
- EPS = Evolved Packet Service, LTE data sessions
- EPC = Evolved Packet Core, the LTE core network
- APN = Access Point Name (same as 2G/3G)
- Bearer = PDP session, GTP Tunnel for a given used
- SeGW = Security Gateway, segments eNB / EPC
- SGW = Serving Gateway, like GGSN, connects to Internet

PDP Context vs. EPS Bearer

- UMTS and GPRS data session
 - Packet Data Protocol (PDP) Context
 - Attach (Alert SGSN) -> PDP Context Activation procedure
- LTE data session
 - Evolved Packet System (EPS) Bearer
 - Default EPS Bearer
 - Dedicated EPS Bearer
- Both use parameters:
 - Access Point Name (APN),
 - IP address type,
 - QoS parameters

LTE GTP = eGTP

- GTP-U
- From eNodeB to PDN GW
 - PGW
 - aka Internet exit node
 - Used to be the GGSN

GTP-U

• udp/2152

LTE Control Plane: eNodeB-MME Priority One Security

UE					MME	
NAS	eNo	NAS				
RRC	RRC	S1AP		Doutor/	S1AP	
PDCP	PDCP	SCTP		Router/ SecGW	SCTP	
RLC	RLC	IP IPsec		IP IPsec	IP	
MAC	MAC			Ethernet	Ethernet	
LTE RF	LTE RF	Ethernet				
S1-CP						

S1AP

• sctp/36412

LTE Control Plane: eNodeB-eNodeB

X2AP

• sctp/36422

Protocol and port matrix

Communicating nodes		Ductocal	Protocol ports		
Source	Destination	Protocol	Source	Destination	
eNodeB	S-GW	GTP-U/UDP	2152	2152	
S-GW	eNodeB	GTP-U/UDP	2152	2152	
eNodeB	eNodeB	GTP-U/UDP	2152	2152	
eNodeB	MME	S1AP/SCTP	36422	36412	
MME	eNodeB	S1AP/SCTP	36412	36422	
eNodeB	eNodeB	X2AP/SCTP	36422	36422	

All is ASN1

- All protocols described in ASN1
 - Different kind of Encoding
 - BER Basic, standard TLV
 - PER Packed,
 - Aligned (APER)
 - Unaligned (UPER)
 - Described in ITU and 3GPP standards
 - Require ASN1 "CLASS" keywords

LTE SIGNALING

Diameter Everywhere

- Diameter replaces SS7 MAP
- DSR
 - Diameter Signaling Router

Comparing the SS7 and Diameter Protocol Stacks

MAP CAP

INAP

TCAP

SCCP

MTP

S6, S9, S13, Gx,Gy,Gz Cx,Dx,Sh,Dh Rx,Rf,Ro,

Diameter

SCTP

IP

Diameter Proxy Agent

Diameter Relay Agent

- Diameter is the successor of Radius, originally used for AAA
- Diameter acts as an "envelope" for applications (= interfaces)

Mapping of SS7 to IP protocols

- CAP* 2G/3G CAMEL prepaid functions in future via Diameter, VAS functions of CAMEL via SIP (= INAP)
- MAP* AAA and mobility in future via Diameter, Messaging (SMS) via SIP

Signaling Protocol Evolution

- Diameter and SIP become the dominant signaling protocols
- SCTP "point-to-point" connections remain

Security implication

- SCTP filtering to be generalized
- Benefit
 - SCTP is "config first" most of the time
- Threat
 - IP cloud is much more exploitation friendly
 - Attack techniques are known to many people
 - Compromise consequences are more far-reaching than
 SS7

Diameter Roaming

Security routing and filtering in Diameter

- DSR
 - Define routing & filtering rules
- Discriminants Indicators
 - Destination-based:
 - Realm, Host, Application-ID
 - Origination-based:
 - Realm, Host, Application-ID
 - Command-Code
 - IMSIAddress

Future Diameter Routing & Filtering

Simplified S6a Network

Security & Vulnerability of EPC Roaming

- Filtering even more important
 - DSR filtering is not mature
- GRX problems amplified
 - Impact of the GRX/IPX/IMS/SAE EPC DNS infrastructure in Information Gathering
- Unique Identifier leaks much easier
 - Privacy consequences

TESTING

Testing Security in an LTE Environment

- Two kind of environment
 - Testbed
 - Live (also called Production, Greenfield, Active)

LTE Testbed Security testing

- Shielded testing
 - eNodeB antenna output connected to a cable
 - Cable arrives in test room
 - A "Shielded box" in test room is connected to cable
 - Phone / USB dongle is put inside the box for tests
 - USB cable goes out of the box toward the test PC
- No RF is polluting the spectrum
 - Enables pre-auction testing

Relationship to Vendors

- Vendor usually prevent audit
 - By limiting information
 - By limiting access to Device Under Test
 - By limiting access to testbed
 - By threatening of potential problems, delays, responsibility, liability
- Most of the LTE testing can happen transparently
 - The vendor doesn't see the security audit team
 - Presented as normal operator qualification
 - Not presented as security audit
- Result only is presented when audit is finished

AUDITS

GTP

- Endpoint discovery
- Illegal connection/association establishment
 - User identity impersonation
 - Fuzzing
- Leak of user traffic
 - to Core Network (EPC)
 - to LTE RAN

X2AP Audit

- Endpoint discovery
- Illegal connection/association establishment
 - Fuzzing
- Reverse engineering of proprietary extensions
- MITM

S1AP Audit

- Endpoint discovery
- Illegal connection/association establishment
 - Fuzzing
- Reverse engineering of proprietary extensions
- MITM
 - NAS injection

LTE EPC DNS Audit

- EPC DNS is important
- EPC DNS scanner
- Close to GRX / IMS

ATTACKS

User attacks: EPS Bearer Security Attacks

- APN Bruteforcing
- IP Segmentation
 - accessing operators' RFC1918 internal networks
- GTP endpoint discovery
 - from within Bearer Data Session
- Secondary EPS Bearer Exhaustion/Flood load DoS
 - Max 11 to be tested
 - Repeat setup/teardown of connections
- PGW DiffServ testing
 - Scans the IP header DS bits (Differentiated Services) to see difference in treatment by PGW

TOOLS

Basic audit tools

- LTE SIM card
- LTE USB Dongle
- LTE UE (User Equipment) = Phone
- RJ45 for Ethernet connection to EPC/EUTRAN
- Wireshark
- Sakis3G and evolutions for LTE support
- IPsec audit tool

Ideal audit tools

- GTP protocol stack & fuzzer
- SCTP MITM tool & fuzzer
- Ethernet/ARP MITM tool (ettercap)
- S1AP protocol stack & fuzzer
- NAS protocol stack & fuzzer
- X2AP protocol stack & fuzzer
- Diameter protocol stack & fuzzer
- GRX, IMS, EPC DNS scanner

Virtualization targets

- Huawei
 - In progress
 - HSS
 - MSC Proxy
 - Potential
 - USN, Serving GW, PDN GW, MME
 - eHRS integrated node (MME, HSS, SGW, PGW, ...)
 - Easier because one single node
- HP opportunity?

LTE Network Virtualization

Huawei ATCA vs. PGP

- OSTA 2.0
 - Linux based
 - OpenSuse 10.x or 11.x
 - Old, unpatched kernel
 - Proprietary extensions and SMP
 - Some FPGA based boards
 - Some OEM based integration (Switches AR40, Routers, ...)
- PGP
 - Older architecture
 - More monolithic
 - Harder to replicate

Hard problems

- Use same kernel (medium)
- Use licensing (medium)
- Load signed kernel modules (medium hard)
- Emulate FPGA and OEM integration (hard)
- Replicate network services / other NEs (hard)

HSS

- ATCA / OSTA 2.0
- Few external hardware
- Moderately easy
- Operation in progress
- Based on HSS_V900R003

Virtualizing in context (CSFB)

MSC Proxy

- ATCA / OSTA 2.0
- No external hardware
- Moderately easy
- Configuration with
 - existing SS7 SIGTRAN infrastructure
 - Diameter testbed

USN

- USN_V900R011C02SPC100
- Harder

Ericsson

- Difficult to deal with them
- Very protective
 - Access
 - Licensing
 - Documentation

NSN

- Potentially easier than Ericsson
- Linux based (SGSN, ...)
 - MontaVista
- Some security features

Cisco

- Some virtualization done
 - IOS 12.x
- Some virtualization needs hardware
 - Cisco 7200
 - Cisco ITP
 - Cisco GGSN
- Virtual networking
- Our technology for adapted virtualization

Our advantage so far

- Virtualize x86 with specific/signed kernels and modules
- Virtualize MIPS
- Emulation of specific hardware support
 - Kernel modules development
- Virtualize ARM Android based device
 - for customer simulation

Mobile + VAS virtualization

- Specific demand from customer
 - Virtualize x86 based server
 - Virtualize 10-20 Android clients
 - Simulate fraudulent transaction within this flow
 - Inject faults within repeated traffic

VIRTUALIZED SIGNALING FUZZING

Principle

- Proxies
 - M3UA Proxy
 - S1/X2 Proxy
 - Diameter Proxy
- Made transparent
 - SCTP Man in the Middle
 - Packet forwarding

LTE increases risks

- Financial theft
- Privacy theft
- Hacking of corporate users
- M2M impact of worms and attacks
- LTE Mobile broadband usage as main internet connection
- Protocols are untested and traditional fuzzer coverage is weak and shallow
- Network equipment is new and not as reliable as traditional network elements

Questions?