
Behavior-based Methods for Automated,
Scalable Malware Analysis

Stefano Zanero, PhD

Assistant Professor, Politecnico di Milano

2

Stefano Zanero

Knowing the enemy = key for success

“He will win who knows when to fight and when not
to fight... He will win who, prepared himself, waits to
take the enemy unprepared. Hence the saying: If
you know the enemy and know yourself, you need
not fear the result of a hundred battles. If you know
yourself but not the enemy, for every victory gained
you will also suffer a defeat. If you know neither the
enemy nor yourself, you will succumb in every
battle.” [Sun-Tsu]

3

Stefano Zanero

The malware problem

Malware at the root of many internet security problems
 Tens of thousands of new samples each day
 developed with creation kits = rapid evolution of

multiple variations
 Underground economy fuelling malware creation
 1990s: explosive diffusion of identical malware
 2010s: stealthy diffusion of variants of malware

designed to be difficult to identify, trace and analyze

4

Stefano Zanero

Antivirus detection ratio...

Names censored to protect the culprits...
Data related to last week
Thanks to VirusTotal (www.virustotal.com)

5

Stefano Zanero

6

Stefano Zanero

The analysis issue

Analysts are way too few, code is way too much

Need better ways to
 Automatically analyze/reverse engineer malware
 Automatically classify/cluster malware, e.g. in families

For both, we have two approaches with symmetric issues

7

Stefano Zanero

Static vs. dynamic approaches

Static approaches

+ Complete analysis

- Difficult to extract semantics

- Obfuscation / packing

Dynamic approaches

+ Easy to see “behaviors”

+ Malware unpacks itself

- “Dormant” code

8

Stefano Zanero

Our Approach

Turn weakness into strength, and strength into weakness, as
Sun-Tzu would have us: leverage code reuse between
malware samples to our advantage

 Automatically generate semantic-aware models of
code implementing a given malicious behavior

 Use these models to statically detect the malicious
functionality in samples that do not perform that
behavior during dynamic analysis

 Use a variation of this technique to study malware
evolution over time

9

Stefano Zanero

REANIMATOR

Run malware in monitored environment and detect
a malicious behavior (phenotype)

Identify and model the code responsible for the
malicious behavior (genotype model)

Match genotype model against other unpacked
binaries

10

Stefano Zanero

REANIMATOR

11

Stefano Zanero

Dynamic Behavior Identification

12

Stefano Zanero

Dynamic Behavior Identification

Run malware in instrumented sandbox
 Anubis (anubis.iseclab.org)

Dynamically detect a behavior B (phenotype)

Map B to the set R
B
 of system/API call instances

responsible for it

R
B
 is the output of the behavior identification phase

13

Stefano Zanero

Behavior Detection Examples

spam: send SMTP traffic on port 25
 network level detection

sniff: open promiscuous mode socket
 system call level detection

rpcbind: attempt remote exploit against a specific vulnerability
 network level detection, with snort signature

drop: drop and execute a binary
 system call level detection, using data flow information

...

14

Stefano Zanero

Extracting Genotype Models

15

Stefano Zanero

Extracting Genotype Models: Goals

Identified genotype should be precise and complete
Complete: include all of the code implementing B
Precise: do not include code that is not specific to B
(utility functions,..)

We proceed by slicing the code, then filtering it to
remove support code, and germinating to complete it

16

Stefano Zanero

Slicing

Start from relevant calls R
B

Include into slice instructionsϕ involved in:
 preparing input for calls in R

B

• follow data flow dependencies backwards from call inputs

 processing the outputs of calls in R
B

• follow data flow forward from call outputs

We do not consider control-flow dependencies
 would lead to including too much code (taint explosion problem)

17

Stefano Zanero

Filtering

The slice is not preciseϕ

General purpose utility functions are frequently included (i.e:
string processing)

 may be from statically linked libraries (i.e: libc)
 genotype model would match against any binary that links to the

same library

Backwards slicing goes too far back: initialization and even
unpacking routines are often included

 genotype model would match against any malware packed with
the same packer

18

Stefano Zanero

Filtering Techniques

Exclusive instructions:
 set of instructions that manipulate tainted data every time

they are executed
 utility functions are likely to be also invoked on untainted

data

Discard whitelisted code:
 whitelist obtained from other tasks or execution of the same

sample, that do not perform B
 could also use foreign whitelist

• i.e: including common libraries and unpacking routines

19

Stefano Zanero

Germination

The slice is not completeϕ

Auxiliary instructions are not included
 loop and stack operations, pointer arithmetic, etc

Add instructions that cannot be executed without
executing at least one instruction in ϕ

Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)

20

Stefano Zanero

Finding Dormant Functionality

21

Stefano Zanero

Finding Dormant Functionality

Genotype is a set of instructions

Genotype model is its colored control flow graph (CFG)
 nodes colored based on instruction classes

2 models match if they share at least one K-Node subgraph
(K=10)

Use techniques by Kruegel et al. to efficiently match a binary
against a set of genotype models

We use Anubis as a generic unpacker

22

Stefano Zanero

Evaluation

Are the results accurate?
 when REANIMATOR detects a match, is there really the dormant

behavior?
 how reliably does REANIMATOR detect dormant behavior in the

face of recompilation or modification of the source code?

Are the results insightful?
 does REANIMATOR reveal behavior we would not see in dynamic

analysis?

23

Stefano Zanero

Accuracy

To test accuracy and robustness of our system we need a
ground truth

Dataset of 208 bots with source code
 thanks to Jon Oberheide and Michael Bailey from University of

Michigan

Extract 6 genotype models from 1 bot

Match against remaining 207 bot binaries

24

Stefano Zanero

Accuracy

Even with source, manually verifying code similarity is time-
consuming

Use a source code plagiarism detection tool
 MOSS

We feed MOSS the source code corresponding to each of the 6
behaviors

 match it against the other 207 bot sources
 MOSS returns a similarity score in percentage

We expect REANIMATOR to match in cases where MOSS returns
high similarity scores

25

Stefano Zanero

MOSS Comparison

26

Stefano Zanero

MOSS Comparison

Potential False Negatives

Potential False Positives

27

Stefano Zanero

Accuracy Results

We manually investigated the potential false positives and false
negatives

Low false negative rate (~1.5%)
 mostly small genotypes

No false positives
 genotype model match always corresponds to presence of code

implementing the behavior

Also no false positives against dataset of ~2000 benign binaries
 binaries in system32 on a windows install

28

Stefano Zanero

Robustness

Robustness results when re-compiling same source
 Robust against different compilation options (<7% false

negatives)
 Robust against different compiler versions
 Not robust against completely different compiler (>80% false

negatives)
 Some robustness to malware metamorphism was

demonstrated by Kruegel in a previous work

29

Stefano Zanero

In-the-Wild Detection

10 genotype models extracted from 4 binaries

4 datasets
 irc_bots: 10238 IRC bots
 packed_bots: 4523 packed IRC bots
 pushdo: 77 pushdo binaries (dropper, typically drops spam

engine cutwail)
 allaple: 64 allaple binaries (network worm)

Reanimator reveals a lot of functionality not observed during
dynamic analysis

30

Stefano Zanero

In-the-Wild Detection

B: Behavior observed in dynamic analysis.
S,D: Functionality detected by Reanimator

31

Stefano Zanero

Beagle

 Tracking of malware evolution over time
 Let malware update and at each step:

• Run malware in monitored environment to
see behaviors

• Identify the code changes responsible for
malicious behavior changes

 Use the same techniques of
REANIMATOR for identifying and
labeling behaviors, and evolutions of
binary code

32

Stefano Zanero

Beagle: overview

33

Stefano Zanero

Beagle: how do we define a behavior

 We make use of an Anubis-like sandbox to automatically
analyze system level activity

 We extract automatically graphs of connected actions that we
call (unlabeled) behaviors

 We then label (some of) them manually, and can recognize
with simple rules them across different samples

 This is similar to the REANIMATOR behavior signatures
 Opposed to REANIMATOR we tag code with behavior at a

function-level granularity

34

Stefano Zanero

Beagle: our dataset

35

Stefano Zanero

Beagle: some global results

36

Stefano Zanero

Beagle: breakdown of changes on behaviors

Gamarue family

Distribution of
similarity

Bold line = median
Box = quantiles
(0,25,75,100)
Circle = outlier

37

Stefano Zanero

Beagle: some of the insights

 Changes and evolution
• Some families are much more actively developed than others
• Also we can pinpoint changes over individual behaviors,
sometimes across the collection

• In some cases, overall development appears constant/low, but we
can disaggregate it to significant changes

 Effort
• We have blocks in ASM, not LoC in source, but we can do some
estimate

• We estimate that avg added code in Zeus over each variation is
140–280 LoC, with peaks up to 9,000

• Roughly holds for other families but we are less certain
• Significant effort of development in malware

38

Stefano Zanero

Malware classification

 An open problem with much
confusion

 Classification by antivirus
vendors completely unreliable

 We demonstrated this by
analyzing naming
inconsistencies among them

 Many strong inconsistencies
which cannot be solved by
simply remapping names

39

Stefano Zanero

Classifying malware by structural and
behavioral features

Several works perform either:
 Structural clustering based on code features (e.g. works by H. Flake,

Ero Carrera, and others)
 Behavioral clustering based on program execution traces (e.g. works

by P. M. Comparetti, C. Kruegel, and others)

Our next research: using the same backward-forward
techniques we used in the previous 2 works to map these
two clustering approaches to each other. This will improve
the quality of the families, help cluster correctly malware
which is obfuscated or which has dormant behaviors

40

Stefano Zanero

Conclusions

 Structural analysis alone is too time and brain
consuming

 Dynamic analysis alone has too many blind
points

 We can combine both to obtain:
• Dormant code analysis and tagging
• Evolution tracking
• Triage of new samples
• (hopefully) better means of classifying
specimens in families

 Much work needs to be done in this area

41

Stefano Zanero

Thanks for your attention!

Any question unanswered during Q&A or any follow up:

stefano.zanero@polimi.it

Most of the work presented was/is joint work with:

UCSB – Christopher Kruegel

Lastline – Paolo Milani Comparetti

Northeastern University – Engin Kirda

Technical University of Vienna – Martina Lindorfer

Politecnico di Milano - Federico Maggi, Alessandro di Federico

Of course, errors and opinions are mine solely :-)

Performed under EU financing

(WOMBAT, SysSec, i-Code projects)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

