
Behavior-based Methods for Automated, 
Scalable Malware Analysis

Stefano Zanero, PhD

Assistant Professor, Politecnico di Milano



2

Stefano Zanero

Knowing the enemy = key for success

“He will win who knows when to fight and when not 
to fight... He will win who, prepared himself, waits to 
take the enemy unprepared. Hence the saying: If 
you know the enemy and know yourself, you need 
not fear the result of a hundred battles. If you know 
yourself but not the enemy, for every victory gained 
you will also suffer a defeat. If you know neither the 
enemy nor yourself, you will succumb in every 
battle.” [Sun-Tsu]
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The malware problem

Malware at the root of many internet security problems
 Tens of thousands of new samples each day
 developed with creation kits = rapid evolution of 

multiple variations
 Underground economy fuelling malware creation
 1990s: explosive diffusion of identical malware
 2010s: stealthy diffusion of variants of malware 

designed to be difficult to identify, trace and analyze
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Antivirus detection ratio...

Names censored to protect the culprits...
Data related to last week
Thanks to VirusTotal (www.virustotal.com)
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The analysis issue

Analysts are way too few, code is way too much

Need better ways to
 Automatically analyze/reverse engineer malware
 Automatically classify/cluster malware, e.g. in families

For both, we have two approaches with symmetric issues
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Static vs. dynamic approaches

Static approaches

+ Complete analysis

- Difficult to extract semantics

- Obfuscation / packing

Dynamic approaches

+ Easy to see “behaviors”

+ Malware unpacks itself

- “Dormant” code
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Our Approach

Turn weakness into strength, and strength into weakness, as 
Sun-Tzu would have us: leverage code reuse between 
malware samples to our advantage

 Automatically generate semantic-aware models of 
code implementing a given malicious behavior

 Use these models to statically detect the malicious 
functionality in samples that do not perform that 
behavior during dynamic analysis

 Use a variation of this technique to study malware 
evolution over time



9

Stefano Zanero

REANIMATOR

Run malware in monitored environment and detect 
a malicious behavior (phenotype)

Identify and model the code responsible for the 
malicious behavior  (genotype model)

Match genotype model against other unpacked 
binaries
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REANIMATOR
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Dynamic Behavior Identification
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Dynamic Behavior Identification

Run malware in instrumented sandbox 
 Anubis (anubis.iseclab.org)

Dynamically detect a behavior B (phenotype)

Map B to the set R
B
 of system/API call instances 

responsible for it

R
B
 is the output of the behavior identification phase
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Behavior Detection Examples

spam: send SMTP traffic on port 25 
 network level detection

sniff: open promiscuous mode socket
 system call level detection

rpcbind: attempt remote exploit against a specific vulnerability
 network level detection, with snort signature

drop: drop and execute a binary 
 system call level detection, using data flow information

...
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Extracting Genotype Models
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Extracting Genotype Models: Goals

Identified genotype should be precise and complete
Complete: include all of the code implementing B 
Precise: do not include code that is not specific to B 
(utility functions,..)

We proceed by slicing the code, then filtering it to 
remove support code, and germinating to complete it
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Slicing

Start from relevant calls R
B 

Include into slice  instructionsϕ  involved in:
 preparing input for calls in R

B

• follow data flow dependencies backwards from call inputs

 processing the outputs of calls in R
B

• follow data flow forward from call outputs

We do not consider control-flow dependencies
 would lead to including too much code (taint explosion problem)
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Filtering

The slice  is not preciseϕ

General purpose utility functions are frequently included (i.e: 
string processing)

 may be from statically linked libraries (i.e: libc) 
 genotype model would match against any binary that links to the 

same library

Backwards slicing goes too far back: initialization and even 
unpacking routines are often included

 genotype model would match against any malware packed with 
the same packer



18

Stefano Zanero

Filtering Techniques

Exclusive instructions: 
 set of instructions that manipulate tainted data every time 

they are executed
 utility functions are likely to be also invoked on untainted 

data

Discard whitelisted code:
 whitelist obtained from other tasks or execution of the same 

sample, that do not perform B
 could also use foreign whitelist 

• i.e: including common libraries and unpacking routines
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Germination

The slice  is not completeϕ

Auxiliary instructions are not included
 loop and stack operations, pointer arithmetic, etc

Add instructions that cannot be executed without 
executing at least one instruction in ϕ

Based on graph reachability analysis on the intra-
procedural Control Flow Graph (CFG)
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Finding Dormant Functionality
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Finding Dormant Functionality

Genotype is a set of instructions

Genotype model is its colored control flow graph (CFG)
 nodes colored based on instruction classes

2 models match if they share at least one K-Node subgraph 
(K=10)

Use techniques by Kruegel et al. to efficiently match a binary 
against a set of genotype models

We use Anubis as a generic unpacker
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Evaluation

Are the results accurate?
 when REANIMATOR detects a match, is there really the dormant 

behavior?
 how reliably does REANIMATOR detect dormant behavior in the 

face of recompilation or modification of the source code?

Are the results insightful?
 does REANIMATOR reveal behavior we would not see in dynamic 

analysis?
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Accuracy

To test accuracy and robustness of our system we need a 
ground truth

Dataset of 208 bots with source code
 thanks to Jon Oberheide and Michael Bailey from University of 

Michigan

Extract 6 genotype models from 1 bot

Match against remaining 207 bot binaries
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Accuracy

Even with source, manually verifying code similarity is time-
consuming

Use a source code plagiarism detection tool
 MOSS

We feed MOSS the source code corresponding to each of the 6 
behaviors

 match it against the other 207 bot sources
 MOSS returns a similarity score in percentage

We expect REANIMATOR to match in cases where MOSS returns 
high similarity scores
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MOSS Comparison
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MOSS Comparison

Potential False Negatives

Potential False Positives
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Accuracy Results

We manually investigated the potential false positives and false 
negatives

Low false negative rate (~1.5%)
 mostly small genotypes

No false positives
 genotype model match always corresponds to presence of code 

implementing the behavior

Also no false positives against dataset of ~2000 benign binaries
 binaries in system32 on a windows install
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Robustness

Robustness results when re-compiling same source
 Robust against different compilation options (<7% false 

negatives)
 Robust against different compiler versions
 Not robust against completely different compiler (>80% false 

negatives)
 Some robustness to malware metamorphism was 

demonstrated by Kruegel in a previous work
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In-the-Wild Detection

10 genotype models extracted from 4 binaries

4 datasets
 irc_bots: 10238 IRC bots
 packed_bots: 4523 packed IRC bots
 pushdo: 77 pushdo binaries (dropper, typically drops spam 

engine cutwail)
 allaple: 64 allaple binaries (network worm)

Reanimator reveals a lot of functionality not observed during 
dynamic analysis
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In-the-Wild Detection

B: Behavior observed in dynamic analysis.    
S,D: Functionality detected by Reanimator
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Beagle

 Tracking of malware evolution over time
 Let malware update and at each step:

• Run malware in monitored environment to 
see behaviors 

• Identify the code changes responsible for 
malicious behavior changes

 Use the same techniques of 
REANIMATOR for identifying and 
labeling behaviors, and evolutions of 
binary code
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Beagle: overview
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Beagle: how do we define a behavior 

 We make use of an Anubis-like sandbox to automatically 
analyze system level activity

 We extract automatically graphs of connected actions that we 
call (unlabeled) behaviors

 We then label (some of) them manually, and can recognize 
with simple rules them across different samples

 This is similar to the REANIMATOR behavior signatures
 Opposed to REANIMATOR we tag code with behavior at a 

function-level granularity
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Beagle: our dataset
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Beagle: some global results
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Beagle: breakdown of changes on behaviors

Gamarue family

Distribution of 
similarity

Bold line = median
Box = quantiles
(0,25,75,100)
Circle = outlier
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Beagle: some of the insights

 Changes and evolution
• Some families are much more actively developed than others
• Also we can pinpoint changes over individual behaviors, 
sometimes across the collection

• In some cases, overall development appears constant/low, but we 
can disaggregate it to significant changes

 Effort
• We have blocks in ASM, not LoC in source, but we can do some 
estimate

• We estimate that avg added code in Zeus over each variation is 
140–280 LoC, with peaks up to 9,000

• Roughly holds for other families but we are less certain
• Significant effort of development in malware
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Malware classification

 An open problem with much 
confusion

 Classification by antivirus 
vendors completely unreliable

 We demonstrated this by 
analyzing naming 
inconsistencies among them

 Many strong inconsistencies 
which cannot be solved by 
simply remapping names 
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Classifying malware by structural and 
behavioral features

Several works perform either:
 Structural clustering based on code features (e.g. works by H. Flake, 

Ero Carrera, and others)
 Behavioral clustering based on program execution traces (e.g. works 

by P. M. Comparetti, C. Kruegel, and others)

Our next research: using the same backward-forward 
techniques we used in the previous 2 works to map these 
two clustering approaches to each other. This will improve 
the quality of the families, help cluster correctly malware 
which is obfuscated or which has dormant behaviors
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Conclusions

 Structural analysis alone is too time and brain 
consuming

 Dynamic analysis alone has too many blind 
points

 We can combine both to obtain:
• Dormant code analysis and tagging
• Evolution tracking
• Triage of new samples
• (hopefully) better means of classifying 
specimens in families

 Much work needs to be done in this area
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Thanks for your attention!

Any question unanswered during Q&A or any follow up:

stefano.zanero@polimi.it

Most of the work presented was/is joint work with:

UCSB – Christopher Kruegel

Lastline – Paolo Milani Comparetti

Northeastern University – Engin Kirda

Technical University of Vienna – Martina Lindorfer

Politecnico di Milano - Federico Maggi, Alessandro di Federico

Of course, errors and opinions are mine solely :-)

Performed under EU financing 

(WOMBAT, SysSec, i-Code projects)
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