
iOS 6 Kernel Security:

A Hacker’s Guide

by Mark Dowd and Tarjei Mandt

mdowd@azimuthsecurity.com

tm@azimuthsecurity.com

mailto:mdowd@azimuthsecurity.com

Introduction

 iOS 6 recently released

 Large focus on security improvements –

particularly kernel hardening

 Primarily targets strategies employed in

“jailbreaks”

 This talk provides an overview of the new

kernel-based mitigations

 Explores new techniques for attacking iOS 6

Topics Covered

 Part 1 – Defense

– Heap Hardening Strategies

– Stack Cookies

– Information Leaking Mitigations

– Address Space Layout Randomization (ASLR)

– User/Kernel address space hardening

 Part 2 – Offense

– Information Leaking

– Heap Strategies

Randomization Algorithm

 First, a word on randomness…

 Used to derive random numbers for stack
cookie, heap cookies, kernel map ASLR, and
pointer obfuscation

 Random seed generated (or retrieved) during
boot loading (iBoot)

 Combined with current time to get random
value

Randomization Algorithm

Heap Hardening

 Heap has been hardened to prevent well-

known attack strategies

 Three mitigations put in place

– Pointer validation

– Block poisoning

– Freelist integrity verification

 Specific to the zone allocator (zalloc(), used

by kalloc(), MALLOC(), MALLOC_ZONE())

Heap Hardening - Recap

 Quick recap of old exploitation techniques

required

– Covered in the past extensively by Stefan Esser,

Nemo, probably others

 Zone allocations divided in to fixed-size

zones (kalloc.8, kalloc.16, ... kalloc.32768)

– Specialized zones also utilized for specific tasks

(eg. Pmap_zone, vm_map_copy_zone, etc)

 Zone allocates more pages on demand

Heap Hardening - Recap

Heap Hardening - Recap

 Zone allocates blocks of pages on demand

– Divides memory in to element-size blocks

– All blocks initially added to zone’s free list

 Zone free list maintained as singly linked list

– First DWORD of free block overwritten with “next”

pointer when it is freed

 Allocations simply remove elements from the

free list

Heap Hardening - Recap

Heap Hardening - Recap

 Previous exploitation techniques rely on

overwriting free list pointers in free blocks

– Future allocation can return arbitrary memory

block

 Typical strategy: Add a pointer to sysent

– Add new system call

– Invoke new system call

– Profit

Heap Hardening – Pointer Validation

 Goal: Prevent invalid pointers being entered

in to kalloc() zone’s freelist

 Additional checks performed on pointers

passed to zfree()

– Also performed as part of validation on pointers in

freelist during allocation (zalloc())

Heap Hardening – Pointer Validation

 Pointer verified to be in kernel memory (0x80000000
< ptr < 0xFFFEFFFF)

 If allows_foreign is set in zone, no more
validation performed
– Currently event_zone,

vm_map_entry_reserved_zone, vm_page_zone

 If pointer is within kernel image, allow (??)

 Otherwise, ensure pointer is within
zone_map

Heap Hardening – Block Poisoning

 Goal: Prevent UAF-style attacks

 Strategy involves filling blocks with sentinel
value (0xdeadbeef) when being freed
– Performed by add_to_zone() called from zfree()

 Only performed on selected blocks
– Block sizes smaller than cache line size of

processor (e.g. 32 bytes on A5/A5X devices)

– Can override with “-zp”, “-no-zp”, “zp-factor” boot
parameters

Heap Hardening – Freelists

 Goal: Prevent heap overwrites from being

exploitable

 Two random values generated at boot time

(zone_bootstrap())

– 32-bit cookie for “poisoned blocks”

– 31-bit cookie for “non-poisoned blocks”

 Low bit is clear

 Values serve as validation cookies

Heap Hardening – Freelists

 Freelist pointers at the top of a free block are

now validated by zalloc()

– Work performed by alloc_from_zone()

 Encoded next pointer placed at end of block

– XOR’d with poisoned_cookie or

nonpoisoned_cookie

Heap Hardening – Freelists

Heap Hardening – Freelists

 zalloc() ensures next_pointer matches

encoded pointer at end of block

– Tries both cookies

– If poisoned cookie matches, check whole block

for modification of sentinel (0xdeadbeef) values

– Cause kernel panic if either check fails

 Next pointer and cookie replaced by

0xdeadbeef when allocated

– Possible information leak protection

Heap Hardening – Primitives

 OSUnserializeXML() could previously be

used to perform kernel heap feng shui

– Technique presented by Stefan Esser in «iOS

Kernel Heap Armageddon» at SyScan 2012

 Allowed precise allocation and freeing of

kalloc zone data

 Also possible to force persistent allocations

by wrapping the reference count

Heap Hardening - Primitives

<plist version="1.0">

<dict>

 <key>AAAA</key>

 <array ID="1" CMT="IsNeverFreedTooManyReferences">...</array>

 <key>REFS</key>

<array>

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

...

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/>

</array>

</dict>

</plist>

Heap Hardening - Primitives

 Duplicate dictionary keys no longer result in

freeing of the original key/value

 Dictionary entries can no longer be pinned to

memory using multiple references

 In both cases, the plist dictionary is

considered invalid

Stack Cookies

 Goal: Prevent stack overflow exploitation

 Only applied to functions with
structures/buffers

 Random value generated during early kernel
initialization (arm_init())

 24-bit random value
– 32-bit value really, but 2nd byte zeroed out

– Presumably string copy prevention

Stack Cookies

 Generated stack cookie placed directly after

saved registers at bottom of stack frame

 Pointer to cookie saved at top of stack frame

– Or in a register if convenient

– Space above stack cookie pointer used for called

functions if necessary

Stack Cookies

Stack Cookies

 Function epilog verifies saved stack cookie

– Generated value found by following saved pointer

 Verification failure results in kernel panic

Information Leaking Mitigations

 Goals:

– Prevent disclosure of kernel base

– Prevent disclosure of kernel heap addresses

 Strategies:

– Disables some APIs

– Obfuscate kernel pointers for some APIs

– Zero out pointers for others

Information Leaking Mitigations

 Previous attacks relied on zone allocator
status disclosure
– host_zone_info() / mach_zone_info()

– Stefan Esser described using this for heap “feng
shui” (https://media.blackhat.com/bh-us-
11/Esser/BH_US_11_Esser_Exploiting_The_iOS
_Kernel_Slides.pdf)

 APIs now require PE_i_can_has_debugger()
access

https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf
https://media.blackhat.com/bh-us-11/Esser/BH_US_11_Esser_Exploiting_The_iOS_Kernel_Slides.pdf

Information Leaking Mitigations

 Several APIs disclose kernel object pointers

– mach_port_kobject()

– mach_port_space_info()

– vm_region_recurse() / vm_map_region_recurse()

– vm_map_page_info()

– proc_info (PROC_PIDREGIONINFO,
PROC_PIDREGIONPATHINFO, PROC_PIDFDPIPEINFO,
PROC_PIDFDSOCKETINFO,
PROC_PIDFILEPORTSOCKETINFO)

– fstat() (when querying pipes)

– sysctl(net.inet.*.pcblist)

Information Leaking Mitigations

 Need these APIs for lots of reasons

– Often, underlying APIs rather than exposed ones

listed previously

 Strategy: Obfuscate pointers

– Generate 31 bit random value at boot time

 lowest bit always 1

– Add random value to real pointer

Information Leaking Mitigations

Information Leaking Mitigations

Information Leaking Mitigations

 Other APIs disclose pointers unnecessarily

– Zero them out

 Used to mitigate some leaks via sysctl

– Notably, known proc structure infoleak

Kernel ASLR

 Goal: Prevent attacker’s from

modifying/utilizing data at known (fixed)

addresses

 Strategy is two-fold

– Randomize kernel image base

– Randomize base of kernel_map (sort of)

Kernel ASLR – Kernel Image

 Kernel base randomized by boot loader
(iBoot)
– Random data generated

– SHA-1 hash of data taken

– Byte from SHA-1 hash used to calculate kernel
“slide”

 Kernel is rebased using the formula:
0x01000000 + (slide_byte * 0x00200000)
– If slide is 0, static offset of 0x21000000 is used

Kernel ASLR – Kernel Image

Kernel ASLR – Kernel Image

 Calculated value added to kernel preferred
base later on

 Result:
– Kernel can be rebased at 1 of 256 possible

locations

– Base addresses are 2MB apart
 Example: 0x81200000, 0x81400000, … 0xA1000000

 Adjusted base passed to kernel in boot args
structure (offset 0x04)

Kernel ASLR – Kernel Map

 Used for kernel allocations of all types

– kalloc(), kernel_memory_allocate(), etc

 Spans all of kernel space (0x80000000 ->

0xFFFEFFFF)

 Kernel-based maps are submaps of

kernel_map

– zone_map, ipc_kernel_map, etc

Kernel ASLR – Kernel Map

 Strategy involves randomizing the base of

kernel_map

– Random 9-bit value generated right after

kmem_init() (which establishes kernel_map)

– Multiplied by page size

– Resulting value used as size for initial

kernel_map allocation

– 9 bits = 512 different allocation size possibilities

Kernel ASLR – Kernel Map

 Future kernel_map (including submap)

allocations pushed forward by random

amount

– Allocation silently removed after first garbage

collection (and reused)

 Behavior can be overridden with “kmapoff”

boot parameter

Kernel ASLR – Kernel Map

Kernel Address Space Protection

 Goal: Prevent NULL/offset-to-NULL

dereference vulnerabilities

 Previously, kernel mapped in to user-mode

address space

 NULL-dereferences were prevented by

forcing binaries to have __PAGE_ZERO

section

– Does not prevent offset-to-NULL problems

Kernel Address Space Protection

 kernel_task now has its own address space

while executing

– Transitioned to with interrupt handlers

– Switched between during copyin() / copyout()

 User-mode pages therefore not accessible

while executing in kernel mode

 Impossible to accidentally access them

Kernel Address Space Protection

Kernel Address Space Protection

 BUG – iOS 5 and earlier had very poor user/kernel

validation in copyin() / copyout()

– Only validation: usermode pointer < 0x80000000

– Length not validated

 Pointer + length can be > 0x80000000 (!)

– Can potentially read/write to kernel memory

 Limitation: Device must have > 512M to map

0x7FFFF000

– iPad 3 / iPhone 5

Kernel Address Space Protection

Kernel Address Space Protection

 iOS 6 added security checks

– Integer overflow/signedness checks

– Conservative maximum length

– Pointer + length < 0x80000000

 iOS 6 still vulnerable!

– If copy length <= 0x1000, pointer + length check

not performed

– Can read/write to first page of kernel memory

Kernel Address Space Protection

Kernel Address Space Protection

 Is anything in the first page of memory?

– Initially contains kmap offset allocation, but that is

removed after first garbage collection

– Some things allocate to kernel map directly

 HFS

 kalloc() blocks of >= 256k

 Create a pipe, specify buffers > 0x7FFFF000

 Bonus: If memory is not mapped, kernel will

not panic (safely return EFAULT)

Kernel Address Space Protection

 Memory is no longer RWX

– Kernel code cannot be directly patched

– Heap is non-executable

– Stack is non-executable

Kernel Attacks: Overview

 Protections kill most of the known attack

strategies

– Syscall table overwrites

– Patching kernel code

– Attacking key data structures (randomized

locations)

 Need something new!

Kernel Attacks: Overview

 Generally, exploit will require information

leaking followed by corruption

 Corruption primitives dictate strategy

– Write in to adjacent buffer (overflow)

– Write to relative location from buffer

– Write to arbitrary location

 Different types of primitives will be

considered separately

Kernel Attacks: KASLR

 Leaking the kernel base is really useful

 Kext_request() allows applications to

request information about kernel modules

– Divided into active and passive operations

 Active operations (load, unload, start, stop,

etc.) require privileged (root) access

– Secure kernels (i.e. iOS) remove ability to load

kernel extensions

Kernel Attacks: KASLR

 Passive operations were originally

unrestricted in < iOS 6

– Allowed unprivileged users to query kernel and

module base addresses

Kernel Attacks: KASLR

 iOS 6 inadvertently removed some limitations

– Only load address requests disallowed

Kernel Attacks: KASLR

 We can use

kKextRequestPredicateGetLoaded

– Returns load addresses and mach-o header

dumps (base64 encoded)

– Load address / Mach-O segment headers are

obscured to hide ASLR slide

– Mach-O section headers are not!

– Reveals virtual addresses of loaded kernel

sections

Kernel Attacks: KASLR

<dict><key>Kext Request Predicate</key><string>Get Loaded Kext Info</string></dict>

<dict ID="0"><key>__kernel__</key><dict

ID="1"><key>OSBundleMachOHeaders</key><data

ID="2">zvrt/gwAAAAJAAAAAgA…AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhQ

CIAAAAAAJgAAABAAAAAwPDIAwEUAAA==</data>

…

<key>OSBundleLoadAddress</key><integer size="64" ID="9">0x80001000</integer>

Request

Response

Decoded kernel

macho header

Real __text

section address

Kernel Attacks: Heap Corruption

 Standard heap overflow tricks no longer work

– Overwriting freelist pointer results in validation

step failing

 Exploitation requires new strategies

– Information leak to find heap address/cookies

– Control structure manipulation

 Depends on corruption primitives

Kernel Attacks: Heap Overflows

 Overflowing metadata is useful

– Various control structures can be targeted instead

– Requires some heap grooming (may or may not

be difficult depending on block size)

 Various heap attacking primitives can be

combined to gain code execution

Kernel Attacks: Heap Overflows

 Introducing vm_map_copy_t

Kernel Attacks: Heap Overflows

 Kernel buffers allocated by vm_map_copyin()

if size < 4096

 Creating them is easy

– Send messages to a mach port with

ool_descriptors in them

– They are persistent until the message is received

 Corrupting these structures are useful for

information leaking and exploitation

Kernel Attacks: Heap Overflows

 Primitive 1: Adjacent Disclosure

– Overwrite size parameter of vm_map_copy_t

– Receive the message corresponding to the map

– Returns memory past the end of your allocated

buffer

 Bonus: Overwritten size is not used in kfree()

– No side effects

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

 Primitive 2: Arbitrary Memory Disclosure

– Overwrite size and pointer of adjacent

vm_map_copy_t

– Receive message, read arbitrary memory from

kernel

 No side effects

– Data pointer (cpy_kdata) is never passed to

kfree() (the vm_map_copy_t is)

– Leave kalloc_size alone!

Kernel Attacks: Heap Overflows

 Primitive 3: Extended Overflow

– Overwrite kalloc_size with larger value

– Passed to kfree() – block entered in to wrong

zone (eg. kalloc.256 instead of kalloc.128)

– Allocate block from poisoned zone

– Profit

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

 Primitive 4: Find our own address + Overflow

– Mix and match primitive 1 and 3

– Overwrite one whole vm_map_copy_t, changing

kalloc_size to be suitably large

– Overflow in to adjacent vm_map_copy_t, partially

overwriting pointer / length

– Free second copy (revealing pointers to itself)

– Free first copy, creating poisoned kalloc block at

known location

Kernel Attacks: Heap Overflows

Kernel Attacks: Heap Overflows

Conclusion

 iOS 6 mitigations significantly raise the bar

– Many of the old tricks don’t work

– A variety of bugs likely to be (reliably)

unexploitable now

 Presented strategies provide useful

mechanisms for exploiting iOS 6

 Thanks!

