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Introduction 

 iOS 6 recently released 

 Large focus on security improvements – 

particularly kernel hardening 

 Primarily targets strategies employed in 

“jailbreaks” 

 This talk provides an overview of the new 

kernel-based mitigations 

 Explores new techniques for attacking iOS 6 



Topics Covered 

 Part 1 – Defense 

– Heap Hardening Strategies 

– Stack Cookies 

– Information Leaking Mitigations 

– Address Space Layout Randomization (ASLR) 

– User/Kernel address space hardening 

 Part 2 – Offense 

– Information Leaking 

– Heap Strategies 



Randomization Algorithm 

 First, a word on randomness… 

 Used to derive random numbers for stack 
cookie, heap cookies, kernel map ASLR, and 
pointer obfuscation 

 Random seed generated (or retrieved) during 
boot loading (iBoot) 

 Combined with current time to get random 
value 

 

 



Randomization Algorithm 



Heap Hardening 

 Heap has been hardened to prevent well-

known attack strategies 

 Three mitigations put in place 

– Pointer validation 

– Block poisoning 

– Freelist integrity verification 

 Specific to the zone allocator (zalloc( ), used 

by kalloc( ), MALLOC( ), MALLOC_ZONE( )) 

 

 



Heap Hardening - Recap 

 Quick recap of old exploitation techniques 

required 

– Covered in the past extensively by Stefan Esser, 

Nemo, probably others 

 Zone allocations divided in to fixed-size 

zones (kalloc.8, kalloc.16, ... kalloc.32768) 

– Specialized zones also utilized for specific tasks 

(eg. Pmap_zone, vm_map_copy_zone, etc) 

 Zone allocates more pages on demand 
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Heap Hardening - Recap 

 Zone allocates blocks of pages on demand 

– Divides memory in to element-size blocks 

– All blocks initially added to zone’s free list 

 Zone free list maintained as singly linked list 

– First DWORD of free block overwritten with “next” 

pointer when it is freed 

 Allocations simply remove elements from the 

free list 
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Heap Hardening - Recap 

 Previous exploitation techniques rely on 

overwriting free list pointers in free blocks 

– Future allocation can return arbitrary memory 

block 

 Typical strategy: Add a pointer to sysent 

– Add new system call 

– Invoke new system call  

– Profit 

 

 



Heap Hardening – Pointer Validation 

 Goal: Prevent invalid pointers being entered 

in to kalloc( ) zone’s freelist 

 Additional checks performed on pointers 

passed to zfree( ) 

– Also performed as part of validation on pointers in 

freelist during allocation (zalloc( )) 

 

 



Heap Hardening – Pointer Validation 

 Pointer verified to be in kernel memory (0x80000000 
< ptr < 0xFFFEFFFF) 

 If allows_foreign is set in zone, no more 
validation performed 
– Currently event_zone, 

vm_map_entry_reserved_zone, vm_page_zone 

 If pointer is within kernel image, allow (??) 

 Otherwise, ensure pointer is within 
zone_map 

 

 

 



Heap Hardening – Block Poisoning 

 Goal: Prevent UAF-style attacks 

 Strategy involves filling blocks with sentinel 
value (0xdeadbeef) when being freed 
– Performed by add_to_zone( ) called from zfree( ) 

 Only performed on selected blocks 
– Block sizes smaller than cache line size of 

processor (e.g. 32 bytes on A5/A5X devices) 

– Can override with “-zp”, “-no-zp”, “zp-factor” boot 
parameters 

 

 



Heap Hardening – Freelists 

 Goal: Prevent heap overwrites from being 

exploitable 

 Two random values generated at boot time 

(zone_bootstrap( )) 

– 32-bit cookie for “poisoned blocks” 

– 31-bit cookie for “non-poisoned blocks” 

 Low bit is clear 

 Values serve as validation cookies 

 

 

 

 



Heap Hardening – Freelists 

 Freelist pointers at the top of a free block are 

now validated by zalloc( ) 

– Work performed by alloc_from_zone( ) 

 Encoded next pointer placed at end of block 

– XOR’d with poisoned_cookie or 

nonpoisoned_cookie 
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Heap Hardening – Freelists 

 zalloc( ) ensures next_pointer matches 

encoded pointer at end of block 

– Tries both cookies 

– If poisoned cookie matches, check whole block 

for modification of sentinel (0xdeadbeef) values 

– Cause kernel panic if either check fails 

 Next pointer and cookie replaced by 

0xdeadbeef when allocated 

– Possible information leak protection 

 

 

 



Heap Hardening – Primitives 

 OSUnserializeXML( ) could previously be 

used to perform kernel heap feng shui 

– Technique presented by Stefan Esser in «iOS 

Kernel Heap Armageddon» at SyScan 2012 

 Allowed precise allocation and freeing of 

kalloc zone data 

 Also possible to force persistent allocations 

by wrapping the reference count 

 

 



Heap Hardening - Primitives 

<plist version="1.0"> 

<dict> 

  <key>AAAA</key> 

  <array ID="1" CMT="IsNeverFreedTooManyReferences">...</array> 

  <key>REFS</key> 

<array> 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

... 

<x IDREF="1"/><x IDREF="1"/><x IDREF="1"/><x IDREF="1"/> 

</array> 

</dict> 

</plist> 



Heap Hardening - Primitives 

 Duplicate dictionary keys no longer result in 

freeing of the original key/value 

 Dictionary entries can no longer be pinned to 

memory using multiple references 

 In both cases, the plist dictionary is 

considered invalid 

 

 



Stack Cookies 

 Goal: Prevent stack overflow exploitation 

 Only applied to functions with 
structures/buffers 

 Random value generated during early kernel 
initialization (arm_init( )) 

 24-bit random value  
– 32-bit value really, but 2nd byte zeroed out 

– Presumably string copy prevention 

 



Stack Cookies 

 Generated stack cookie placed directly after 

saved registers at bottom of stack frame 

 Pointer to cookie saved at top of stack frame  

– Or in a register if convenient 

– Space above stack cookie pointer used for called 

functions if necessary 

 

 

 



Stack Cookies 



Stack Cookies 

 Function epilog verifies saved stack cookie 

– Generated value found by following saved pointer 

 Verification failure results in kernel panic 



Information Leaking Mitigations 

 Goals: 

– Prevent disclosure of kernel base 

– Prevent disclosure of kernel heap addresses 

 Strategies: 

– Disables some APIs 

– Obfuscate kernel pointers for some APIs 

– Zero out pointers for others 

 

 

 



Information Leaking Mitigations 

 Previous attacks relied on zone allocator 
status disclosure 
– host_zone_info( ) / mach_zone_info( ) 

– Stefan Esser described using this for heap “feng 
shui” (https://media.blackhat.com/bh-us-
11/Esser/BH_US_11_Esser_Exploiting_The_iOS
_Kernel_Slides.pdf) 

 APIs now require PE_i_can_has_debugger() 
access 
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Information Leaking Mitigations 

 Several APIs disclose kernel object pointers 

– mach_port_kobject( ) 

– mach_port_space_info( ) 

– vm_region_recurse( ) / vm_map_region_recurse( ) 

– vm_map_page_info( ) 

– proc_info ( PROC_PIDREGIONINFO, 
PROC_PIDREGIONPATHINFO, PROC_PIDFDPIPEINFO, 
PROC_PIDFDSOCKETINFO,  
PROC_PIDFILEPORTSOCKETINFO ) 

– fstat( ) (when querying pipes) 

– sysctl( net.inet.*.pcblist ) 

 

 



Information Leaking Mitigations 

 Need these APIs for lots of reasons 

– Often, underlying APIs rather than exposed ones 

listed previously 

 Strategy: Obfuscate pointers 

– Generate 31 bit random value at boot time  

 lowest bit always 1 

– Add random value to real pointer 
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Information Leaking Mitigations 

 Other APIs disclose pointers unnecessarily 

– Zero them out 

 Used to mitigate some leaks via sysctl 

– Notably, known proc structure infoleak 

 



Kernel ASLR 

 Goal: Prevent attacker’s from 

modifying/utilizing data at known (fixed) 

addresses 

 Strategy is two-fold 

– Randomize kernel image base 

– Randomize base of kernel_map (sort of) 

 



Kernel ASLR – Kernel Image 

 Kernel base randomized by boot loader 
(iBoot) 
– Random data generated 

– SHA-1 hash of data taken 

– Byte from SHA-1 hash used to calculate kernel 
“slide” 

 Kernel is rebased using the formula: 
0x01000000 + (slide_byte * 0x00200000) 
– If slide is 0, static offset of 0x21000000 is used 

 



Kernel ASLR – Kernel Image 

 

 

 

 

 

 

 



Kernel ASLR – Kernel Image 

 Calculated value added to kernel preferred 
base later on 

 Result: 
– Kernel can be rebased at 1 of 256 possible 

locations 

– Base addresses are 2MB apart 
 Example: 0x81200000, 0x81400000, … 0xA1000000 

 Adjusted base passed to kernel in boot args 
structure (offset 0x04) 

 



Kernel ASLR – Kernel Map 

 Used for kernel allocations of all types 

– kalloc( ), kernel_memory_allocate( ), etc 

 Spans all of kernel space (0x80000000 -> 

0xFFFEFFFF) 

 Kernel-based maps are submaps of 

kernel_map 

– zone_map, ipc_kernel_map, etc 

 



Kernel ASLR – Kernel Map 

 Strategy involves randomizing the base of 

kernel_map 

– Random 9-bit value generated right after 

kmem_init( ) (which establishes kernel_map) 

– Multiplied by page size 

– Resulting value used as size for initial 

kernel_map allocation 

– 9 bits = 512 different allocation size possibilities 

 

 



Kernel ASLR – Kernel Map 

 Future kernel_map (including submap) 

allocations pushed forward by random 

amount 

– Allocation silently removed after first garbage 

collection (and reused) 

 Behavior can be overridden with “kmapoff” 

boot parameter 

 

 



Kernel ASLR – Kernel Map 

 

 



Kernel Address Space Protection 

 Goal: Prevent NULL/offset-to-NULL 

dereference vulnerabilities 

 Previously, kernel mapped in to user-mode 

address space 

 NULL-dereferences were prevented by 

forcing binaries to have __PAGE_ZERO 

section 

– Does not prevent offset-to-NULL problems 

 

 



Kernel Address Space Protection 

 kernel_task now has its own address space 

while executing 

– Transitioned to with interrupt handlers 

– Switched between during copyin( ) / copyout( ) 

 User-mode pages therefore not accessible 

while executing in kernel mode 

 Impossible to accidentally access them 

 

 



Kernel Address Space Protection 

 

 



Kernel Address Space Protection 

 BUG – iOS 5 and earlier had very poor user/kernel 

validation in copyin( ) / copyout( ) 

– Only validation: usermode pointer < 0x80000000  

– Length not validated 

 Pointer + length can be > 0x80000000 (!) 

– Can potentially read/write to kernel memory  

 Limitation: Device must have > 512M to map 

0x7FFFF000 

– iPad 3 / iPhone 5 

 

 

 

 

 

 

 



Kernel Address Space Protection 

 

 

 



Kernel Address Space Protection 

 iOS 6 added security checks 

– Integer overflow/signedness checks 

– Conservative maximum length 

– Pointer + length < 0x80000000 

 iOS 6 still vulnerable! 

– If copy length <= 0x1000, pointer + length check 

not performed 

– Can read/write to first page of kernel memory 
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Kernel Address Space Protection 

 Is anything in the first page of memory? 

– Initially contains kmap offset allocation, but that is 

removed after first garbage collection 

– Some things allocate to kernel map directly 

 HFS 

 kalloc() blocks of >= 256k 

 Create a pipe, specify buffers > 0x7FFFF000 

 Bonus: If memory is not mapped, kernel will 

not panic (safely return EFAULT) 

 

 

 

 

 



Kernel Address Space Protection 

 Memory is no longer RWX 

– Kernel code cannot be directly patched 

– Heap is non-executable 

– Stack is non-executable 

 

 

 

 



Kernel Attacks: Overview 

 Protections kill most of the known attack 

strategies 

– Syscall table overwrites 

– Patching kernel code 

– Attacking key data structures (randomized 

locations) 

 Need something new! 



Kernel Attacks: Overview 

 Generally, exploit will require information 

leaking followed by corruption 

 Corruption primitives dictate strategy 

– Write in to adjacent buffer (overflow) 

– Write to relative location from buffer 

– Write to arbitrary location 

 Different types of primitives will be 

considered separately 



Kernel Attacks: KASLR 

 Leaking the kernel base is really useful 

 Kext_request( ) allows applications to 

request information about kernel modules 

– Divided into active and passive operations 

 Active operations (load, unload, start, stop, 

etc.) require privileged (root) access 

– Secure kernels (i.e. iOS) remove ability to load 

kernel extensions 



Kernel Attacks: KASLR 

 Passive operations were originally 

unrestricted in < iOS 6 

– Allowed unprivileged users to query kernel and 

module base addresses 

 

 

 

 



Kernel Attacks: KASLR 

 iOS 6 inadvertently removed some limitations 

– Only load address requests disallowed 

 

 

 



Kernel Attacks: KASLR 

 We can use 

kKextRequestPredicateGetLoaded  

– Returns load addresses and mach-o header 

dumps (base64 encoded) 

– Load address / Mach-O segment headers are 

obscured to hide ASLR slide 

– Mach-O section headers are not! 

– Reveals virtual addresses of loaded kernel 

sections 

 



Kernel Attacks: KASLR 

<dict><key>Kext Request Predicate</key><string>Get Loaded Kext Info</string></dict> 

<dict ID="0"><key>__kernel__</key><dict 

ID="1"><key>OSBundleMachOHeaders</key><data 

ID="2">zvrt/gwAAAAJAAAAAgA…AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMhQ

CIAAAAAAJgAAABAAAAAwPDIAwEUAAA==</data> 

… 

<key>OSBundleLoadAddress</key><integer size="64" ID="9">0x80001000</integer> 

Request 

Response 

Decoded kernel 

macho header 

Real __text 

section address 



Kernel Attacks: Heap Corruption 

 Standard heap overflow tricks no longer work 

– Overwriting freelist pointer results in validation 

step failing 

 Exploitation requires new strategies 

– Information leak to find heap address/cookies 

– Control structure manipulation 

 Depends on corruption primitives 

 



Kernel Attacks: Heap Overflows 

 Overflowing metadata is useful 

– Various control structures can be targeted instead 

– Requires some heap grooming (may or may not 

be difficult depending on block size) 

 Various heap attacking primitives can be 

combined to gain code execution 

 

 



Kernel Attacks: Heap Overflows 

 Introducing vm_map_copy_t 

 

 



Kernel Attacks: Heap Overflows 

 Kernel buffers allocated by vm_map_copyin() 

if size < 4096 

 Creating them is easy 

– Send messages to a mach port with 

ool_descriptors in them 

– They are persistent until the message is received 

 Corrupting these structures are useful for 

information leaking and exploitation 

 

 

 

 

 



Kernel Attacks: Heap Overflows 

 Primitive 1: Adjacent Disclosure 

– Overwrite size parameter of vm_map_copy_t 

– Receive the message corresponding to the map 

– Returns memory past the end of your allocated 

buffer 

 Bonus: Overwritten size is not used in kfree()  

– No side effects 
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Kernel Attacks: Heap Overflows 

 Primitive 2: Arbitrary Memory Disclosure 

– Overwrite size and pointer of adjacent 

vm_map_copy_t 

– Receive message, read arbitrary memory from 

kernel 

 No side effects 

– Data pointer (cpy_kdata) is never passed to 

kfree() (the vm_map_copy_t is) 

– Leave kalloc_size alone! 

 

 

 



Kernel Attacks: Heap Overflows 

 Primitive 3: Extended Overflow 

– Overwrite kalloc_size with larger value 

– Passed to kfree() – block entered in to wrong 

zone (eg. kalloc.256 instead of kalloc.128) 

– Allocate block from poisoned zone 

– Profit 
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Kernel Attacks: Heap Overflows 

 Primitive 4: Find our own address + Overflow 

– Mix and match primitive 1 and 3 

– Overwrite one whole vm_map_copy_t, changing 

kalloc_size to be suitably large 

– Overflow in to adjacent vm_map_copy_t, partially 

overwriting pointer / length 

– Free second copy (revealing pointers to itself) 

– Free first copy, creating poisoned kalloc block at 

known location 

 

 

 



Kernel Attacks: Heap Overflows 



Kernel Attacks: Heap Overflows 



Conclusion 

 iOS 6 mitigations significantly raise the bar 

– Many of the old tricks don’t work 

– A variety of bugs likely to be (reliably) 

unexploitable now 

 Presented strategies provide useful 

mechanisms for exploiting iOS 6 

 Thanks! 

 

 

 


