
Hack in the Box - Amsterdam 2012

© 2012 Chronic-Dev, LLC

Wednesday, May 30, 2012

JAILBREAK DREAM TEAM
Nikias Bassen, Cyril, Joshua Hill & David Wang

Hack in the Box - Amsterdam 2012

© 2012 Chronic-Dev, LLC

Wednesday, May 30, 2012

Jailbreak Dream Team

• Joshua Hill - @p0sixninja (Chronic-Dev)

• Cyril - @pod2g (Chronic-Dev)

• Nikias Bassen - @pimskeks (Chronic-Dev)

• David Wang - @planetbeing (iPhone Dev Team)

Wednesday, May 30, 2012

Corona A4

• Introduction to iOS security basics

• The racoon format string attack

• The HFS kernel exploit

Wednesday, May 30, 2012

INTRODUCTION TO
iOS & CORONA

What are the security features of iOS and how Corona
basically overcome them

Wednesday, May 30, 2012

iOS: one of the most
secured OS

• iOS introduced in 2007 as iPhoneOS 1.0

• Current release: iOS 5.1.1

• More and more security features over time

• Flaws harder to exploit and quickly patched

• Each release brings new challenges

Wednesday, May 30, 2012

iOS: Security
Features (1)

• Boot Chain: firmware file signatures

• Code Signing: approved binaries only

• W^X: Data Execution Prevention (DEP)

• ASLR: Address Space Layout Randomization

Wednesday, May 30, 2012

iOS: Security
Features (2)

• Stack Canaries: __stack_chk()

• Partitions: system vs user partition

• Users: root vs mobile

• Sandboxing: even finer restrictions

Wednesday, May 30, 2012

limera1n: exploiting the
boot chain

• Bootrom exploit: heap overflow

• Custom image loading skips 2nd stage
bootloader authentication

• Allows custom ramdisks and patched
kernels

• Good entry point for a tethered jailbreak

Wednesday, May 30, 2012

Regular Boot Chain

bootrom (NAND)

LLB

iBoot

kernel

filesystem (ramdisk)

authenticates

authenticates

authenticates

authenticates

Wednesday, May 30, 2012

Exploited Boot Chain

bootrom (DFU)

patched iBSS

patched iBEC

patched kernel

filesystem (ramdisk)

limera1n

Wednesday, May 30, 2012

Corona: exploiting the
rest

• ASLR: launchd key DisableASLR

• Code signing: use of original binary

• Sandbox: entitlements patch

• Format string vulnerability

• DEP: bypassed using ROP

• Kernel exploit: HFS+ vulnerability

Wednesday, May 30, 2012

The corona .deb
package

• 'Topping' for a tethered jailbreak

• Simple installation with Cydia

• Puts required payloads in place

• Installs patched copy of racoon as a launch
daemon

Wednesday, May 30, 2012

UNSIGNED CODE
EXECUTION

Gaining the initial code execution on boot

Wednesday, May 30, 2012

The Exploit

• Format strings in 2012??? WTF!!

• Why aren’t all these dead yet?!?

• OMGWTFBBQ!!!

Wednesday, May 30, 2012

The Exploit

yywarn formats the string and calls plogv

Wednesday, May 30, 2012

The Exploit

plogv reformats again using plog_common again

Wednesday, May 30, 2012

The Exploit
plog_common parses the variable argument

back into a string

Wednesday, May 30, 2012

The Exploit
The new formatted string is then passed to

syslog without any checks

Wednesday, May 30, 2012

Formats strings

• %x will print the value of stack as hex

• %s will deference the current address on stack and
print it as a string

• %u will print an unsigned integer

• %p will print a pointer from the stack

Wednesday, May 30, 2012

Formats strings

• %8u will pad the integer by 8 zeros

• %8$u will reference the 8th argument on stack

• %hh will print 1 bytes

• %n will write the number of bytes printed so far
to the address on stack

Wednesday, May 30, 2012

The Old Way

Create the address you want on the stack and
references it from within the stack

Wednesday, May 30, 2012

Won’t work

• Format string buffer is copied into heap

• Can no long reference format string in stack

Wednesday, May 30, 2012

Frame pointers

• Like linked lists on stack

• Used to store stack pointers for stack
unwinding

Wednesday, May 30, 2012

Frame Pointers
(prolog)

Function prolog pushes frame pointer to stack

Wednesday, May 30, 2012

Frame Pointers
(prolog)

New stack pointer is moved into frame pointer

Wednesday, May 30, 2012

Frame Pointers
(prolog)

Stack is reserved for local variables

Wednesday, May 30, 2012

Frame Pointers
(epilogue)

Stack pointer is restored to frame pointer

Wednesday, May 30, 2012

Frame Pointers
(epilogue)

Old frame pointer and return address restored

Wednesday, May 30, 2012

Linking Frames
Each line in the config script writes one byte to the

stack

Wednesday, May 30, 2012

Linking Frames

• %8u = 00000000

• %2$hhn = write one byte to the value

%8u%2$hhn

Wednesday, May 30, 2012

Exploit File
(First Frame)

• The frame pointer points to a frame pointer
to a frame pointer... etc

0x2ff70000 0x2ff70010 0x2ff70020

Wednesday, May 30, 2012

Exploit File
(First Frame)

• Technically it points to the last byte in each
frame pointer since this is little endian

0x2ff70000 0x2ff70010 0x2ff70020

Wednesday, May 30, 2012

Exploit File
(First Frame)

• By changing only one byte in this frame
pointer we can write to any of the bytes in
the next frame pointer

0x2ff70000 0x2ff7000f 0x2ff70020

Wednesday, May 30, 2012

Exploit File
(First Frame)

• This allows us to read and write to any
address without having to know any stack or
heap addresses

0x2ff70000 0x2ff7000e 0x2ff70020

Wednesday, May 30, 2012

Conditions

• Call stack must be at least 3 functions deep

• Must be able to execute multiple format
strings

Wednesday, May 30, 2012

Why is ROP needed

• Functions on ARM are passed in processor
registers, not on stack like x86

• Unable to execute payload in data
segments, so must use what code is
available

Wednesday, May 30, 2012

Bypassing ASLR

• It can be done!!

• Come to the next part

Wednesday, May 30, 2012

EXPLOITING THE
KERNEL

How Corona manages to patch security features of the
kernel

Wednesday, May 30, 2012

Jailbreaking

• Jailbreaking consists of removing certain
security features of the kernel to let user
execute custom, unsigned code.

• It adds the ability to run code outside of
the ‘container’ sandbox and not complying
on AppStore application rules.

Wednesday, May 30, 2012

Mandatory Code
Signing basics

• iOS Kernel won’t load unsigned MachOs

• iOS Kernel won’t load unsigned pages

• iOS Kernel won’t let user map RWX pages
(except processes with dynamic code
signing entitlement - MobileSafari)

• iOS Kernel won’t execute non platform
apps outside of the ‘container’ profile.

Wednesday, May 30, 2012

Now what ?

• Currently the only public way through is to
modify the kernel to avoid the mandatory
code signing features

• As the kernel is authenticated by the
boot loader, the only way to do it is at
runtime, in memory

• What is nice about the kernel memory is
that it’s nearly all RWX

Wednesday, May 30, 2012

Kernel patching basics

• Only the kernel can access kernel memory

• Thus, only the kernel can patch itself

• Thus, one need to exploit the kernel to
instruct it to patch itself

Wednesday, May 30, 2012

CVE-2012-0642 : pod2g

• Module : HFS

• Available for: iPhone 3GS, iPhone 4, iPhone 4S, iPod
touch (3rd generation) and later, iPad, iPad 2

• Impact: Mounting a maliciously crafted disk image
may lead to a device shutdown or arbitrary code
execution

• Description: An integer underflow existed with the
handling of HFS catalog files.

Wednesday, May 30, 2012

HFS+ in figures

• appeared with Mac OSX 10.4

• supports for files up to 263 bytes (was 231)

• file names can contain up to 255 unicode
characters (was 31 Mac Roman characters)

• 32-bit allocation block numbers (was 16-bit)

Wednesday, May 30, 2012

HFS+ in figures (2)

• Maximum volume size : 263 bytes (was 231)

• Maximum files count : 232 - 1 (was 216-1)

• Multiple byte streams (forks) per file, 2 by
default : data fork and resource fork.

Wednesday, May 30, 2012

HFS+ indexes are files

• The Allocation File (Bitmap)

• The Catalog File (B-Tree)

• The Extents Overflow File (B-Tree)

• Others : the Attributes B-Tree, the Hot Files B-
Tree, the Startup File...

Wednesday, May 30, 2012

The Allocation File

• Is a map of blocks of the volume

• 1 bit per block

• bit is set if the block is allocated

Wednesday, May 30, 2012

The Catalog File

• Is a B-Tree

• location of files (up to 8 first extents)

• basic metadata (file name, attributes, ...)

• hierarchical structure (parent - child
relationship between folder and files)

Wednesday, May 30, 2012

The Extents Overflow File

• Is a B-Tree

• defines additional extents for files of more
than 8 extends

Wednesday, May 30, 2012

The Volume Header

• Defines the basic volume metadata : hfs
version and type, block size, number of
blocks, number of free blocks...

• Points to the index files we have seen
before

Wednesday, May 30, 2012

Volume Header

Extents File
HSFPlusForkData

Catalog File
HSFPlusForkData

Attributes File
HSFPlusForkData

Allocation File
HSFPlusForkData

Wednesday, May 30, 2012

HFSPlusForkData

/* HFS Plus Fork data info - 80 bytes */
struct HFSPlusForkData {
 u_int64_t logicalSize; /* fork's logical size in bytes */
 u_int32_t clumpSize; /* fork's clump size in bytes */
 u_int32_t totalBlocks; /* total blocks used by this fork */
 HFSPlusExtentRecord extents; /* initial set of extents */
} __attribute__((aligned(2), packed));
typedef struct HFSPlusForkData HFSPlusForkData;

Wednesday, May 30, 2012

Volume Header
What if we modify
the total number of
blocks of the
Catalog File to be less
that it really is ? ... :-)

Wednesday, May 30, 2012

Volume Header

Wednesday, May 30, 2012

Let’s try on OSX 10.6.8

• Create a HFS image using dd, vndevice and newfs_hfs tools

• Mount it, add in some files, unmount

• Patch the DWORD at offset 0x51c to be 0x1

• Mount sequence for the test :

• sudo /usr/libexec/vndevice attach /dev/vn0 vnimage.test

• mkdir /Volumes/0

• sudo mount -t hfs -onobrowse,ro /dev/vn0 /Volumes/0

Wednesday, May 30, 2012

Woops !

Wednesday, May 30, 2012

What happens ?

• Kernel panic, different each try, random,
often crashing in zalloc or zfree.

• This points to a kernel memory corruption

• Tried KDP, static analysis, I couldn’t find the
origin of the issue in the code

• Shall I loose time on this ? No... going
straight to exploitation

Wednesday, May 30, 2012

Kernel heap tools

• zone allocator debugging boot args :

• -zc adds address range check of
next free element and saves the pointer in
2 locations to compare them

• -zp fills freed memory with 0xdeadbeef

• Adding these boot args helps the kernel to
crash right on the overflow

Wednesday, May 30, 2012

Kernel heap tools (2)

• We can even send a core dump to a
remote machine at the time of the
corruption.

• The kdumpd service should be running on
the receiver.

• Here is the command to set up this :

• sudo nvram boot-args="debug=0xd44 _panicd_ip=** -zc -zp"

Wednesday, May 30, 2012

Overflow confirmed

Wednesday, May 30, 2012

gdb is now usefull

• Apple releases symbols for all kernels in a
downloadable Kernel Debug Kit

• just need mach_kernel, mach_kernel.dSYM
and kgmacros :

• gdb -core <core dump> mach_kernel

• source kgmacros

Wednesday, May 30, 2012

symbolicated backtrace

Wednesday, May 30, 2012

after-death zprint

This address (which should be the
next free block) looks weird, just a
feeling.

Let’s see...

Wednesday, May 30, 2012

What the... ?

The data of this free element should be all 0xdeadbeef, except the
first and last DWORDs, which would normally be the next
free element. Here it looks like data coming from the vnimage.

Wednesday, May 30, 2012

Kernel heap tools (3)

• We can go further with the -zlog boot arg
now that we know the compromised
zone name: buf.4096. It traces allocations
and frees (which we need to know to
perform the feng shui)

• Here is the command :

• sudo nvram boot-args="debug=0xd44 _panicd_ip=** -zc -zp zlog=buf.
4096"

Wednesday, May 30, 2012

Preparing feng shui

• zstack debug macro gives latest allocations
and frees of the given zone

• conclusion is that buf.4096 is not the best
zone to play with : it changes often because
of the root filesystem also using 4KB
blocks.

• also, iOS next kernel page allocation is not
predictable (see Kernel Heap Armageddon)

Wednesday, May 30, 2012

Exploitable ?

• Here we basically can write arbitrary data
coming from a vnimage to a free element in
the kernel heap

• Talking about exploitation: if the
overwritten element is a free element
(OK), and one can allocate 2 elements after
the overflow, then the 2nd allocation will
happen at controllable location

Wednesday, May 30, 2012

Exploitable ? (2)

• Need an allocation size < 4KB (layout is
not predictable at the page level on IOS) :

• Switch to HFS+ images of 512 B / block

• Need to know allocations per mount : 3

• Need to know overwritten elem. count : 5

Wednesday, May 30, 2012

From vuln. to exploit

• 3 vnimage with a block size of 512 bytes :

• vnimage.clean : standard image

• vnimage.overflow : heap overflow

• vnimage.payload : data to be written in
kernel memory

Wednesday, May 30, 2012

Exploit sequence

• mount vnimage.clean #1
• mount vnimage.clean #2
• unmount vnimage.clean #1
• unmount vnimage.clean #2
• mount vnimage.overflow
• unmount vnimage.overflow
• mount vnimage.clean #3
• mount vnimage.payload

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xe00

0x200 0xc00

0x400 0xa00

0x600 0x800

0x800 0x600

0xa00 0x400

0xc00 0x200

0xe00 0x000

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xc00

0x200 0xa00

0x400 0x800

0x600 0x600

0x800 0x400

0xa00 0x200

0xc00 0x000

0xe00 vnimage.clean 1 #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xa00

0x200 0x800

0x400 0x600

0x600 0x400

0x800 0x200

0xa00 0x000

0xc00

0xe00 vnimage.clean 1 #1

vnimage.clean 1 #2

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x800

0x200 0x600

0x400 0x400

0x600 0x200

0x800 0x000

0xa00

0xc00

0xe00 vnimage.clean 1 #1

vnimage.clean 1 #2

vnimage.clean 1 #3

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x600

0x200 0x400

0x400 0x200

0x600 0x000

0x800

0xa00

0xc00

0xe00 vnimage.clean 1 #1

vnimage.clean 1 #2

vnimage.clean 1 #3

vnimage.clean 2 #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x400

0x200 0x200

0x400 0x000

0x600

0x800

0xa00

0xc00

0xe00 vnimage.clean 1 #1

vnimage.clean 1 #2

vnimage.clean 1 #3

vnimage.clean 2 #1

vnimage.clean 2 #2

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x200

0x200 0x000

0x400

0x600

0x800

0xa00

0xc00

0xe00 vnimage.clean 1 #1

vnimage.clean 1 #2

vnimage.clean 1 #3

vnimage.clean 2 #1

vnimage.clean 2 #2

vnimage.clean 2 #3

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xa00

0x200 0x200

0x400 0x000

0x600

0x800

0xa00

0xc00

0xe00

vnimage.clean 1 #2

vnimage.clean 2 #1

vnimage.clean 2 #2

vnimage.clean 2 #3

vnimage.clean 1 #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xc00

0x200 0xa00

0x400 0x200

0x600 0x000

0x800

0xa00

0xc00

0xe00

vnimage.clean 2 #1

vnimage.clean 2 #2

vnimage.clean 2 #3

vnimage.clean 1 #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xe00

0x200 0xc00

0x400 0xa00

0x600 0x200

0x800 0x000

0xa00

0xc00

0xe00

vnimage.clean 2 #1

vnimage.clean 2 #2

vnimage.clean 2 #3

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x400

0x200 0xe00

0x400 0xc00

0x600 0xa00

0x800 0x200

0xa00 0x000

0xc00

0xe00

vnimage.clean 2 #1

vnimage.clean 2 #2

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x600

0x200 0x400

0x400 0xe00

0x600 0xc00

0x800 0xa00

0xa00 0x200

0xc00 0x000

0xe00

vnimage.clean 2 #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x800

0x200 0x600

0x400 0x400

0x600 0xe00

0x800 0xc00

0xa00 0xa00

0xc00 0x200

0xe00 0x000

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x600

0x200 0x400

0x400 0xe00

0x600 0xc00

0x800 0xa00

0xa00 0x200

0xc00 0x000

0xe00

vnimage.overflow #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x400

0x200 0xe00

0x400 0xc00

0x600 0xa00

0x800 0x200

0xa00 0x000

0xc00

0xe00

vnimage.overflow #1

vnimage.overflow #2

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xe00

0x200 0xc00

0x400 0xa00

0x600 0x200

0x800 0x000

0xa00

0xc00

0xe00

vnimage.overflow #1

vnimage.overflow #2

vnimage.overflow #3

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xe00

0x200 0xc00

0x400

0x600

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

overflowed

overflowed

vnimage.overflow #3

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x400

0x200 0xe00

0x400

0x600

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

overflowed

overflowed

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x600

0x200 0x400

0x400 0xe00

0x600

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

overflowed

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x800

0x200 0x600

0x400 0x400

0x600 0xe00

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x600

0x200 0x400

0x400 0xe00

0x600

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

vnimage.clean 3 #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0x400

0x200 0xe00

0x400

0x600

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

vnimage.clean 3 #1

vnimage.clean 3 #2

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000 0xe00

0x200

0x400

0x600

0x800

0xa00

0xc00

0xe00 overflowed

overflowed

overflowed

overflowed

vnimage.clean 3 #1

vnimage.clean 3 #2

vnimage.clean 3 #3

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000

0x200

0x400

0x600

0x800

0xa00

0xc00

0xe00

overflowed

overflowed

overflowed

vnimage.clean 3 #1

vnimage.clean 3 #2

vnimage.clean 3 #3

vnimage.payload #1

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000

0x200

0x400

0x600

0x800

0xa00

0xc00

0xe00

overflowed

overflowed

vnimage.clean 3 #1

vnimage.clean 3 #2

vnimage.clean 3 #3

vnimage.payload #1

vnimage.payload #2

Wednesday, May 30, 2012

Heap Feng Shui
offset in page allocated ? next free list

0x000

0x200

0x400

0x600

0x800

0xa00

0xc00

0xe00

overflowed

overflowed

vnimage.clean 3 #1

vnimage.clean 3 #2

vnimage.clean 3 #3

vnimage.payload #1

Wednesday, May 30, 2012

Exploited :-)

overflowedvnimage.payload #2

The idea is to set the sysent address in the 1st
DWORD of the element, so that
vnimage.payload #2 is allocated over the
sysent.

Wednesday, May 30, 2012

Kernel write anywhere

• Corona exploit replaces 512 bytes of sysent
with half sysent / half HFS data

• A particular syscall is replaced with a write
anywhere gadget

• that syscall is then utilized to restore the
corrupted sysent and apply jailbreak kernel
patches

Wednesday, May 30, 2012

KWA ROP gadget

LDRD.W R0, R1, [R1]
STR R1, [R0,#4]
BX LR

Wednesday, May 30, 2012

More information ?

• PoC source code will be released to GIT
after HITB

• Read iOS Hacker’s Handbook to know
which patch to apply with the kernel write
anywhere to jailbreak

Wednesday, May 30, 2012

questions?

Wednesday, May 30, 2012

Enjoy your lunch and make
sure you join us for part 2

Wednesday, May 30, 2012

Enjoy your lunch and make
sure you join us for part 2

Wednesday, May 30, 2012

