
HITB Labs:

Practical Attacks

Against 3G/4G

Telecommunication

Networks

Jim Geovedi

Daniel Mende

jim@geovedi.com, dmende@ernw.de

Agenda

 Overview 3G / 4G

 Backhaul Networks

 Backend Protocols in depth

 The Lab

 The Tools

 Exercises

 Conclusions

Overview 3G / 4G

Standards

 In mobile telco world everything standardized by 3GPP

 3GPP: collaboration between groups of telco standard orgs

 Which “type of documents” do you think these guys produce? ;-)

 3GPP standards structured as/bundled in releases

 1992: Phase 1 (GSM)

 2000: Release 99 incl. first specification of 3G UMTS

 2008: Release 8 incl. first specification of LTE stuff

 At times, 3GPP standards are a bit… bulky ;-)

2G/3G

Source: 3GPP

BTS

BTS

BSC

GERAN

MSC/VLR GMSC

HLR AuC
OAM

Core Network

SMSC

Node B

Node B

RNC

UTRAN

PSTN / ISDN

other

Wireless

Networks

SGSN GGSN
X.25 /

Internet /

corporate

networks

P

C

U

RAN: Radio Access Network RNC: Radio Network Controller MSC: Mobile Switching Center AuC: Authentication Center

UTRAN: UMTS RAN BTS: Base Transceiver Station VLR: Visitor Location Register OAM: Operation Administration & Maintenance

GERAN: GSM Enhanced RAN BSC: Base Station Controller GMSC: Gateway MSC SMSC: Short Message Service Center

PCU: Paket Control Unit HLR: Home Location Register GSN: GPRS Support Node S/GGSN: Serving/Gateway GSN

4G

Backhaul Networks

Backhaul networks – Definition

 In communication services

 Used to transport information from one network node to another

 In mobile communication

 Mobile Backhaul

 Carries data from the RAN to the management network and back.

 Three primary functions

 Transport

 Aggregation and grooming

 Switching/routing

Mobile Backhaul (3G)

Backhaul networks in 4G

 4G specific requirements laid out by 3GPP

 Includes

 eNodeB

 MME

 SGW

 Represents

 The transport network between eNodeB and MME

 The transport network between eNodeB and SGW

eNB

MME

SAE-GW Internet

AAA

Backhaul networks – Technologies

 Mostly ATM in the early years (GSM)

 PDH/SDH over Microwave, T1/E1

 IP/MPLS

 “Hybrid Approach“ with data

offloading to DSL

 Carrier Ethernet

How to get into backhaul

 Physical intrusion to some

cage located “in the somewhere”

 Get access to “network segment”

 Microwave

 DSL

 Carrier Ethernet

 4G aggregates “dumb” BTS and BSC/RNC functions on one

device  eNB not “dumb” anymore.

Once you’re in (a backhaul network)

 Attack components

 3G: SGSN, RNC, NodeB

 4G: MME, eNB, SAE-GW

 Routers/Switches

 Eavesdropping

 Will get you some key material
 but what would you need this for? Pretty much everything is unencrypt. here anyway.

 That‟s why 3GPP insists on using IPsec gateways.

 Subsequent question: do (which) operators implement this?

 In standard bodies $SOME_BIG_COUNTRY (hint: in Asia) strongly

opposed this recommendation.

Protocols used in Backend

GTP

 GPRS Tunneling Protocol

 IP-based protocol initially used

to carry GPRS within GSM and

UMTS networks.

 Plays major role in 4G networks as well.

 Three variants

 GTP-C used for control plane (signaling)

 GTP-U used for user data

 GTP„ used for charging data

GTP

 GTP-C

 Control section of the GTP standard

 In 3G used for signaling between SGSN and GGSN

 Activates and deactivates GTP sessions

 In roaming scenarios this happens between different operators.

 GTP-U

 Used for data transport between the RAN and the core network

 Can tunnel packets in several formats: IPv4, IPv6, PPP etc. …

 GTP„

 Used in 3G for transmitting charging data from the CDF to the CGF.

GTP Header

 The GTP Header

 GTPv1

 GTPv2

Some GTP message types

 GTP-C provides messages for
 Echo

 Create/Update/Delete/Initiate PDP Context

 PDU Notification

 Send Routing Information

 Failure Report

 Note MS/MS info

 Identification

 SGSN Context

 Forward Relocation

 Forward SRNS Context

 RAN information

 MBMS Notification/Context/(De-)Registration/Session

GTP in 4G

GTP-C

 Control protocol for GTP session

 Very complex protocol

 A lots of different mandatory TLVs are

defined for all the different Message types

 Even more optional TLVs are defined, plus

vendor specific „secret‟ TLVs

GTP-U

 Tunneling protocol for ME-traffic.

 Static header length.

 Endpoint multiplexing done by 32bit TEID.

(Tunnel Endpoint Identifier, more on that later)

 User data is transported in clear text

 No authentication mechanism in the protocol itself

GTP from a security perspective

 Unauthenticated protocol

 No inherent security properties

 Trusted environment assumed

 Is used to perform “quite some functions“

 Session establishment (“activate PDP context“)

 Forwarding of packets

 Charging related stuff

 All these functions rely on certain protocol fields

 Presumably only known to valid peers... which are isolated anyway...

© ERNW GmbH | Breslauer Str. 28 | D-69124 Heidelberg | www.ernw.de 22

The PDP-Context

 Packet Data Protocol

 A PDP-Context is an

established data

connection from

the Mobile station to the Network.

 An Access Point Name (APN) is used

to determine QoS and billing conditions.

 In 4G, also voice calls are data connections!

GTP session establishment

 A GTP-PDPContext-request is sent via GTP-C,

which includes a local TEID and an APN.

 If the APN is valid the request is answered with a

GTP-PDPContext-response (including remote TEID).

 Afterwards GTP-U packets are processed.

TEID in detail

 Tunnel Endpoint Identifier

 Do I need to explain that it serves

to identify endpoints of tunnels? ;-)

 For each (user) data session.

TEID in detail

 Apparently some discussion about it being random

 For obvious (?) security reasons.

 Although we were not able to find spec prescribing this.

 What we observed

 0x00005c35

 0x00005c4d

 0x00005c65

 0x00005c7d

 0x00005c95

 […]

 Does this look random to you ?

S1AP

 S1 Application Protocol

 Used in 4G between eNodeB and MME (the S1 interface).

 Replaces GTP-C which is used in 3G on that interface.

 Uses SCTP for transport.

 Protocol is defined in ASN.1 only (!) in the 3GPP spec.

 Vendors implement proprietary

extensions.

 What could possibly go wrong ;-)

S1AP – Details

 We had the opportunity to test an eNodeB – MME pair,

actively communicating over S1AP.

 Some things came to eyes early:

 No authentication used whatsoever.

 SCTP session is used to keep track of neighbor state.

 -> DoS via spoofed SCTP-ABORT packages.

 Others needed an fuzzing approach to come clear:

 No good parsing of the (ASN.1 defined) protocol.

 Fuzzing lead to major crash of the device.

 No tools or details released here, due to NDA.

 SORRY!

SCTP - Overview

 SCTP

 Stream Control Transmission Protocol

 Specified by IETF, maintained IETF Transport Area (TSVWG) WG

 Specs:

 RFC 3286 (Introduction)

 RFC 2960 (2000)

 RFC 3309

 RFC 4960 (2007)

 RFC 5062

SCTP – 4 way handshake

 SCTP vs. TCP

SCTP – Timeline

 RFC 2960 (2000): initial spec

 RFC 4960 (2007): “major rewrite“

 RFC 5062 (2007) Security Attacks Found Against the Stream

Control Transmission Protocol (SCTP) and Current

Countermeasures”

 So, over time SCTP has changed a bit…

Tests in SCTP space ‒ Practical problems

 Current tools… do not work very well

 Probably due to stack rewrites based on RFC 5206 and 4960

 nmap SCTP does not work “in a satisfactory manner”

 -sZ does give results

 -sY (“half-open handshake”) didn‟t show anything useful
 But we _knew_ the ports were there…

 Philippe Langlois„ SCTPscan

didn„t work either.

 Daniel wrote quick+dirty “simple SCTP port scanner“.

SCTP hacked scanner ;)

s = socket.socket(socket.AF_INET, socket.SOCK_SEQPACKET)

for i in ip:

 for j in xrange(sys.argv[2], sys.argv[3]):

 time.sleep(0.01)

 try:

 s.connect((j, i))

 except Exception, e:

 print "Port %d closed on %s: %s" % (i, j, e)

 else:

 print "Port %d open on %s" % (i, j)

 s.close()

 (this is more port-knocking no real port-scanning)

UDP vs. SCTP

 UDP is „nice‟ from an attackers point of view:

 Easy to spoof

 Fast to scan

 SCTP brings some effort to

Man-in-the-Middle attacks

 4-Way Handshake in performed

 Security cookie is needed

 But, session termination by sending SCTP-ABORT packets

no „hard thing‟.

 In 4G, SCTP session state is used to track neighbor state
-> DoS SGSN vs. GGSN

The VMware

The virtual machine

 Minimal gentoo linux with

 Username „root‟

 Password „toor‟

 Tools and dependencies preinstalled

 Tools in /root/tools

 GTP dizz files in /root/tools/dizzes

 Wireshark on the host system

is recommended

The virtual machine

 Please make sure the virtual machine is running on your

system.

 You will need it to follow the next part of the session.

 If you‟re lacking Wireshark or VMware,

both can be found in the local net:

http://10.0.0.1/

The Lab

GTP on 7200VXR

 7200 is capable of serving as GGSN in a 3G net

 Special image needed

 service gprs ggsn config command

 Once activated, device opens up udp/2123 and udp/2152

 gtp-echo-requests (gtp-v1) are answered on both ports

 gtp-create-PDPcontext-requests (gtp-v1) are answered on

udp/2123 (gtp-c) if a valid/configured APN is given in the

request

40

Lab ranges

 Local Network

 DHCP enabled

 10.0.0.0/24 gw 10.0.0.1

 Target Network

 172.25.1.0/24

The Tools

gtp_scan

 Scans a host to find gtp services on udp/sctp

 Python based

 Requires IPy

 Source:

 http://c0decafe.de/tools/gtp_scan-0.7.tar.gz

43

gtp_scan – cmd

$ python gtp-scan.py --help

Usage: gtp-scan.py [options] address[/net]

Options:

 --version show program's version number and

exit

 -h, --help show this help message and exit

 -w SEC Time to wait for cooldown

 -s Use SCTP for transport, instead of

UDP

gtp_scan – detail

 GTP inbuilt ping mechanism is used to discover services.

 Scans for GTP-U, GTP-C and GTP‟.

 Each port is tested with GTPv1 and GTPv2 echo_requests.

 Listening Services will send back a GTP echo_response, if

no filtering is applied on the path.

 As hosts answer „nicely‟ and UDP is used for transport, fast

scanning of wide network ranges is possible.

Some statistics (GTP-C)

Version 1 Version 2

AfriNIC 26 (31) 11 (26)

APNIC 81 (131) 97 (90)

ARIN 52 (29) 45 (51)

LACNIC 22 (14) 10 (18)

RIPE 129 (97) 94 (435)

UP 310 (302) 257 (620)

[Values in brackets are the results from our last scan, some months ago]

apnbf

 Script that brute forces the APN (Access Point Name)

in GTPv1c.

 Python based

 Source:

 http://c0decafe.de/tools/apnbf-0.1.tar.gz

apnbf – cmd

$ python apnbf.py --help

Usage: apnbf.py [options] address

Options:

 --version show program's version number and

exit

 -h, --help show this help message and exit

 -w WORDLIST Wordlist to use

 -d SEC BruteForce delay

 -v Be verbose

apnbf – detail

 Host are scanned for the possibility to establish

a new PDP_context.

 This requires a valid APN name.

 If the establishment is possible, further attacks could be launched.

 Given list for APN names is brute forced.

 Returned error code gives a good

impression of the hosts „shape‟.

APNBF – results from the internetz

 List of most used APNs in the Wild:

 internet (12)

 INTERNET (10)

 Internet (10)

 wap (5)

 mms (5)

 airtelnet.es (4)

 online.telia.se (3)

 cmnet (3)

 Some gtp speakers don‟t care about the APN at all ;-)

 Python based fuzzing framework

 Useful to fuzz GTP spreaker

 Requires pylibpcap and libdnet

 Source:

 http://c0decafe.de/tools/dizzy-0.5.tar.gz

50

GTP on 7200VXR – DoS

 Sending out _a_lot_ of gtp-echo-requests will stress the

7200er CPU to 100%, so that

 No ICMP pings answered anymore.

 No remote mgmt (ssh/telnet) possible

(refuses connections on tcp/22).

 No further GTP requests processed.

 Sending out _a_lot_ of gtp-create-PDPcontext-requests will

also stress the device, so that only ~30% of all

(valid and bogus) requests are answered.

 However a valid APN is needed

 We‟ll get back to this 

Exercises

Scan for GTP

 Scan the target range [172.25.1.0/24] for GTP* speaking

devices.

#cd /root/tools/gtp_scan-0.7/

#python gtp-scan.py 172.25.1.0/24

Scan for GTP

gtp-scan v0.7 Copyright 2011 Daniel Mende <mail@c0decafe.de>

starting scan of 172.25.1.0/24

cooling down for 10 sec...

172.25.1.3 up, from udp/2123(gtp-c) sent 320300040000000000000000

 *** VALID LEN IN GTP: version = 1 flags = XXX1 0010 type = 3

 *** VERSION NOT SUPPORTED

172.25.1.3 up, from udp/3386(gtp') sent 3e030000ff000000000000000

 version = 1 flags = XXX1 1110 type = 3 len = 0 data = ff0000

 *** VERSION NOT SUPPORTED

172.25.1.3 up, from udp/2123(gtp-c) sent

32020006000000000c3d00000e01

 *** VALID LEN IN GTP: version = 1 flags = XXX1 0010 type = 2

 *** ECHO RESPONSE

done

Find the right APN

 Find at least one valid APN on the identified GTP-C

speaking devices.

#cd /root/tools/apnbf-0.1

#python apnbf.py -w apnlist 172.25.1.3

Find the right APN

apnbf v0.1 Copyright 2011 Daniel Mende <mail@c0decafe.de>

starting scan of 172.25.1.3

trying internet.gprs.unifon.com.ar

 Missing or unknown APN

trying internet.unifon

 Missing or unknown APN

trying internet.ctimovil.com.ar

 Missing or unknown APN

trying internet

*** APN FOUND: internet

trying telstra.internet

 Missing or unknown APN

Establish a valid PDP-Context

 Find the gtp_create_pdp_context_request.dizz in the

dizzes/gtp_v1/ folder on the virtual machine.

 Edit the APN_value field to match the discovered APN:

 { '_name': 'APN_value',

 '_type': 'basic',

 'bytelen': None,

 'cur': '\x0bAPN_HERE',

 'default': '\x0bAND_HERE',

 'fuzz': 'none',

 'length': None},

Establish a valid PDP-Context

#nano /root/tools/dizzes/gtp_v1/gtp_create_pdp_context_request.dizz

 press CTRL+W for find

 enter the search term APN_value

 replace the ernwtel.com with your APN

 press CTRL+O to save and CTRL+X to exit the editor

Establish a valid PDP-Context

 Once the dizz file is prepared, start up dizzy and send the

described packet once:

#python dizzy.py -t -o udp -d 172.25.1.3 -e

2123:2123

../dizzes/gtp_v1/gtp_create_pdp_context_request.dizz

 Look into Wireshark on your host system and examine the

answer. What do you see?

Move on to real fuzzing

 Establishing a valid PDP-context is nice and the first step

for GTP state-full fuzzing, but we will stay with state-less

fuzzing for this time, because:

 This a 3G/4G lab session, no fuzzing training ;)

 I don‟t had the time (yet) to write state-full fuzzing scripts (although

dizzy is usable as a state-full fuzzer)

 We don‟t want to kill the telco industry today :-D

Move on to real fuzzing

 Edit the gtp_create_pdp_context_request.dizz file

again and set every field you want to be fuzzed to:

 'fuzz': 'std',

 Launch up the same dizzy command but remove the -t

(testing) flag.

 Sit back and watch Wireshark ;-)

 BTW, what‟s the load on the target?

Conclusions

 We expect to see a number of attacks in 3G and 4G mobile

telco networks in the next years, for some reasons

 Walled (telco) gardens are vanishing.

 At the same time “terminals“ get more and more powerful.

 In the future it„s all IP in those networks.

 There„s a complex (IP based) protocol landscape.

And potentially ppl_outside_telcos are able to understand these prots.

 As there are apparently people understanding Siemens PCS 7...

 Theory ≠ reality

There’s never enough time…

THANK YOU… ...for yours!

