

Why are we so interested in
Android?

  The App market is like the wild, wild, west.

Open, accessible, unrestricted.

  No need to coerce a user to download your
app and install it from a remote website.

  Permission based security model is new and
puts the average consumer in charge of the
critical security decision making process.

 Apps are not adequately reviewed before
being placed on the market for public
consumption.

Android Marketplace
(The biggest W@r3Z site in the world)

(Besides third party markets…)

Permission Model

 Users are prompted with a permission list
that is at best vaguely described, even in
SDK documentation.

“READ_PHONE_STATE - Allows read only access to phone
state.”

Might be better to say: “…is a permission that grants the
application to read your unique cell phone serial, phone
number, SIM card serial number, and much more!”

Impersonation

 Apps vendors are not validated.

 Malicious developers can publish apps
that masquerade as legitimate products.

  Jon Oberheide provided an entertaining
example. (RootStrap - Twilight)

Risks to Android Users

 Malware
 Autorun
 WiFi
  Phishing
 Rootkits
 Botnet Node
 Network Traversal
  Jailbreaking

Malware

 Don’t believe everything you read. In the
press. It’s not that bad. At least for the
Android Market…

 Android malware is advancing in
sophistication much faster that on
previous computing platforms.

  Introducing “Trend Trojans”.

Malware - Protecting yourself

  Things to look for when selecting apps for
your mobile device:

◦ Has the app been on the market for more than
90 days?

◦ Does the app have decent ratings?

◦ Developers a well known and respected?

◦ What permissions is the app asking for?

Autorun

 Apps run without being “Clicked”.

 Apps can be invoked from automated
system events.

 Since security apps typically scan post
install due to framework limitations this
leaves a window open for attackers to
exploit.

WiFi Hazards

  Many apps do not encrypt your data beforing
rifling them to backend servers.

  Most public access WiFi AP(s) are not
encrypted.

  Even the phone is not in use many apps

auto-sync in the background.

  Hackers can hijack your app accounts!
◦  See FaceSniff

WiFi Hazards – Protecting Yourself

 Uncheck connect when within range
features.

 Disable any other auto connect
functionality.

App Phishing

  Rogue apps can masquerade as legitimate
apps you trust.

  App waits for activity (UI Element) of interest
to spawn.

  Phishing app will then overlay it’s own
interface, tricking the user into entering
sensitive information into the phishing app.

 Think “clickjacking” for Droid

App Phishing - Demo

App Phising – Protecting Yourself

  Exercise caution when granting apps
these permissions:
◦ READ_LOGS
◦ GET_TASKS

  Phish apps will usually be unable to
populate the fake login screen with
saved credentials.

Rootkits

  Proof-of-Concepts have been around for a
while, see:
◦ DEFCON 18 Spiderlabs Android Rootkit

  None currently reported in the markets. At
the moment we’ve only seen them coupled
with 0day for targeted attacks.

  Apps can utilize jail break exploits to gain

root privileges and install them.

Rookits –Protecting Yourself

 No recommendations at this time.

 Rootkit on your mobile == you SOL

Botnet

 A few proof of concepts frameworks have
circulated in the last several months.

  Imagine an army of mobile phones

configured to listen to background noise,
translate to text and target keywords,
perform voiceprints, all why tracking an
individuals every move with a live video
feed.

 Enter Mobile Echelon.

Botnet – Protecting Yourself

 Usually deployed from malware.

  Exercise caution when installing apps (as

discussed in prior malware section).

Traversal Physical Boundaries

  Interesting attack variation supplied by
mobile computing platforms.

 Compromised mobiles can be used to
attack each network that the mobile gains
access to.

Traversal Physical Boundaries –
Protecting Yourself

  Disable “connect when within range” features

  Exercise caution when installing apps.

  Consider installing a firewall app. Hackers fail
to plan for security products.

  Checkout Anti app from Itz. Metasploit for
Android ;)

Jailbreaking

  Su apps default to implicitly allow current and
future process attempts for root escalation.

  Majority of jailbreak users trust shell (bin/
sh).

  Malicious apps can simply invoke the shell
from their app and “su” to root without
prompting user.

Jailbreaking – Protecting yourself

 Don’t jailbreak your phone until a better
escalation solution is available.

 When asked to approval an app for
escalation uncheck the “remember”
checkbox.

Your Toolkit

  DEX2JAR – Convert compiled DEX object
code to a JAR that can be decompiled with
JAD.

  APKTOOL – Disassembler and binary xml
translator built in. Produces Jasmin like
syntax that can be reviewed by your favorite
editor. Also supports apk rebuilding.

  DED (http://siis.cse.psu.edu/ded/) –
Decompiler for Android DEX that while
requires a little more setup but provides
much more reliable results than other
decompilers.

Your Toolkit - cont

 Source Insight – Industry favorite code
analyzer. You can create custom SMALI/
JASMIN parsers to visually render your
code as your desire.

 010 Editor – Fantastic hex editor. Also
supports templates.

  IDA – The only tool for examining
machine code. Cough up the cash, you
need it ;)

Your Toolkit - cont

 Ubuntu 64bit Install
◦ You’ll need this to build your own source so you
can hack with symbols.

 Android Prebuilt binaries
◦ gdbserver
◦  tcpdump
◦  strace
◦ Busybox
◦ bash
◦ valgrind

Things to look for…

 Android Permissions
 Activity Reuse
 SQL Injection
 XML Injection
  Package Name Trust
  Traversing Webviews
  Info Leaks

Android Permissions

  Requested permissions offer us a valuable
first stab at an attack surface area
assessment, e.g.:

◦  READ_LOGS – What happens when malicious log
entries are injected into the system logs?

◦  INTERNET – MITM/Leak Potential

◦  RECEIVE_SMS  Can they app be exploited with a
text message?

Norton Security 2.2.0.305

  Feature allows “buddy” to remotely lock, locate,
and wipe your phone in case of theft. Requires
origin phone number and password.

  SMS Message Syntax: cmd password, e.g.
◦  “lock SecretPassword”
◦  “locate SecretPassword”
◦  …

  SMS origin is easily spoofed (if buddy system
worked as intended).

Norton Security - Cont

  Buddy verification is broken, anyone can issue
remote commands.

  No password strength guideline and phone.

  Limit for failed SMS authorization failures is not
in place.

  User is not warned of failed attempts.

Activity Reuse

  Exported app Activities can be invoked by
external app:

◦ Activity exported by declaring the
“android:export” attribute on the Activity

◦ Activity applied an Intent filter (“intent-filter”).

◦ Activities that do not utilize either of these are
traditionally considered private and are not
accessible.

Privateer Labs performed a review of
618 apps that contained a total of 3592
Activities.

Activities Survey

Exported Activities Requiring Permissions

Total Activities

Unprotected Activities

This yielded 2176 Activities that do not enforce
permissions and are publicly accessible.

Activity Reuse in Skype

 Reported earlier this year.

We can make phone calls without
the needed permission!

SQL Injection

 Android developers are recommended to
use the parameterized query options to
mitigate the risk of SQL Injection.

 …Although many developers build string
queries via the execSQL() method.

XML Injection

  Preferred by new developers (vs SQLite)

 App developers rarely sanitize XML input.

 Began researching potential for XML
injection when I found an example in one
of my apps… We all make mistakes ;)

XML Injection - Cont

  Input sources typically user supplied and
therefor should not be trusted.

 Android SharedPrefs properly encode
problem characters 

Validation

  Test values were pushed to app.
 App was installed onto the Android phone.
  Then pulled and examined to verify the

lack of secondary encoding on special
values

XML Injection

Multiple key fields in the app manifest do not filter
special characters:

<?xml version="1.0" encoding="UTF-8"?>
<manifest android:versionCode="1" android:versionName="1.0 OR \'); | >) ;\'s"
package="com.privateer.vs"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <uses-sdk android:minSdkVersion="8" />
 <application android:label="1.0 OR \'); |>) ;\'s" android:icon="@drawable/icon"
android:debuggable="true">
 <activity android:label="@string/app_name" android:name=".VerizonSyncActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

XML Validation – Android SDK

 Reported to Android Security team.

 Since reporting a new SDK has been
published that does not allow characters
used in XML injection, e.g. ‘>’ to be
supplied in ApplicationManifest fields.

 Attackers can still add these fields using
other means… 

Package Name Trust

  Two package names cannot exist on the
market at the same time.

  Don’t assume that package names can be
trusted.

  Packages are sometimes deployed by vendor

and not placed on the market.

  Packages name may be available on another
(third party) market.

Package Name Trust

 HeroLED 
◦ https://market.android.com/details?
id=com.mclaughlin.HeroLED&rdid=com.mclaug
hlin.HeroLED&rdot=1&pli=1

 Advanced Task Killer has a feature to
ignore “trusted” packages when displaying
the task list to the user.

Package Name Trust

  If we were evil we would have published
names of every possible app we could
think off so we could “squat” them.

 Android package squatting… to be
continued.

Traversing Webviews

 Rich content apps relying on web views.

 Separate store than the browser.

  Prevents browser based XSS, CSRF, etc…

  These remote app web views can be
accessed.

Traversing Webviews

 BROWSABLE

 <activity android:name="com.target.app.schemehandler">

 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme=“httpx" />
 </intent-filter>
 </activity>

Traversing Webviews - Cont

  In this scenario “schemehandler” is an
activity that receives the browse intent
and acts on it. Often this is simply a Web
View request containing data supplied by
the user.

E.g.:
 httpx://user?add=<script here>

Info Leaks

 Apps frequently fail to encrypt sensitive
network communications.

 Setup MITM so you can review the
network data delivery of your target apps.

 Worked for me:
◦ Android -> Ubuntu 10.x PPTPD -> iptables port
redirects -> Burp Proxy

Browser Attack Surface

 Android Browser
◦ Codecs/Plugins are compiled with NDK ;)

◦ Lots of bugs here so far… instant code
execution on the phone if exploited (root with
jailbreak payload)

Tricks of the Trade

  Examine your target app’s code for calls to
isLoggeable(). Grab the tag name supplied
and set the loglevel to enable verbose
logging.

E.g. Enabling web debugging:

setprop log.tag.HttpOperation VERBOSE
setprop log.tag.httpclient.wire.header VERBOSE
setprop log.tag.httpclient.wire.header VERBOSE
setprop log.tag.httpclient.wire.content VERBOSE
setprop log.tag.httpclient.wire.content VERBOSE
…

Instrumentation

 Decompile an app.

  Insert your own classes to exposed extra
debugging information, auto-validate all
certs, etc…

 Very important when auditing apps.

Android OS Vulnerabilities

Liblog

 Very Buggy…

  Log devices are world writeable (/dev/log/
*).

 Arbitrary log writing possible.

  Logcat uses liblog.

Liblog - Cont

  Logcat instances can be exploited to disable log monitoring
functionality in many apps.

  Code execution may be possible due to nature of
vulnerabilities (heap corruption).

  Proof of Concept to be released following HITB.

  Possibility exists of exploiting the logging vulnerabilities
remotely due to nature of vulnerabilities.

  Similar bugs found in library previously.

Logcat - Tombstones

 Android developer friendly version of a
core dump.

  Located in /data/tombstones

Logcat - Tombstone

Build fingerprint: 'verizon/
shadow_vzw/cdma_shadow:
2.3.3/4.5.1_57_DX5-3/110323:user/
release-keys'pid: 6367, tid: 6367
>>> ./logcat <<<signal 11 (SIGSEGV),
code 1 (SEGV_MAPERR), fault addr
deadbaad r0 00000027 r1 deadbaad r2
00000000 r3 00000000 r4 00000000 r5
…

SQL Injection in Framework

 SQLQueryBuilder uses string
concatenation internally to build queries.


 Sanitize input before passing into WHERE
and ORDERBY clauses of query() or
managedQuery() as they are built by
query builder.

Mobile Vendor Vulnerabilities

HTC

  Justin Case and Travis Eckhart recently
disclosed that demonstrate HTC
propagates sensitive data into it’s own
store that is accessible by hackers.

Motorolla!

 Motorola Blur exposes OAUTH tokens
during update checks!

Many apps leak sensitive
information…

 Run a network capture on your Android
and see what else vendors sending ;)

Remote Application Install (RAI)

Google Account Linking

Google Account Linking

  Luckily there has never been a cross-
scripting in any google services… ;)

I know what your’re thinking…

 Google is pretty good about hardening
their services.

 Cookies are usually set HTTP ONLY and
SECURE (not accessible through script or
exposed over HTTP)

Certificate Validation

  [Insert new certicom bug here]
  You could be one null byte away from

having your Android phone rootkited ;)

MITM

  Thanks to certificate validation we don’t
have to worry about MITM.

 Along the way to KUL…

Meanwhile in gate (??)…

Conclusion

  Exercise caution when installing apps.

 Avoid free WiFi use on your mobile until
the privacy leaks are plugged.

 Consider installing a mobile security app.
There are many great security apps that
offer decent protection for free.

Conclusion

 App developers typically do not have the
budget to hire professionals to perform
security audits of their apps.

 Marketplace operators do not currently
perform vulnerability scans of apps.

