
Closer to metal: Reverse engineering the
Broadcom NetExtreme’s firmware

Guillaume Delugré
Sogeti / ESEC R&D

guillaume(at)security-labs.org

HITB 2011 - Amsterdam

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Purpose of this presentation

Hardware trust?

Hardware manufacturers are reluctant to disclose their
specifications

You do not really know what firmwares do behind your back

Consequently you cannot really trust them. . .

Previous works

A SSH server in your NIC, Arrigo Triulzi, PacSec 2008

Can you still trust your network card?, Y-A Perez, L.
Duflot, CanSecWest 2010

Reversing the Broadcom NetExtreme firmware, G.
Delugre, Hack.lu 2010

Runtime Firmware Integrity Verification: What Can Now
Be Achieved, Y-A Perez, L. Duflot, CanSecWest 2011

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 2/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Purpose of this presentation

What is this presentation about?

Reverse engineering of the Broadcom Ethernet NetExtreme
firmware

Building an instrumentation toolset for the device

Developing a new firmware from scratch

Why?

To have a better understanding of the device internals

To look for vulnerabilities inside the firmware code

To develop an open-source alternative firmware for the
community

To develop a rootkit firmware embedded in the network card!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 3/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 4/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Where should we begin?

About the target

Targeted hardware: Broadcom Ethernet NetExtreme NIC

Standard range of Ethernet cards family from Broadcom

Massively installed on personal laptops, home computers,
enterprises. . .

Sources

Broadcom device specifications (incomplete, sometimes
erroneous)

Linux open-source kernel module (tg3)

A firmware code is published as a binary blob in the kernel tree

It is actually not loaded by the Linux driver

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 5/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

The targeted device

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 6/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

NIC overview

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 7/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Device overview

Core blocks

The PHY block

DSP on the Ethernet link
Passes raw data to the MAC block

The MAC block

Processes and queues network frames
Passes them to the driver

MAC components

one or two MIPS CPU

a non-volatile EEPROM memory

a volatile SRAM memory

a set of registers to configure the device

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 8/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Communicating with the device

PCI interface

Cards are connected to the PCI bus

Device is accessible using memory-mapped I/O

Mapped on 16 bits (64 KB)

First 32 KB are a direct mapping onto the device registers
Last 32 KB constitute a R/W window into the internal volatile
memory
The base of the window can be set using a register

EEPROM memory can be accessed in R/W using a dedicated
set of registers

We have access to registers, volatile and EEPROM memory
through the PCI bus.

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 9/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Physical PCI view

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 10/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Different kinds of memory

EEPROM

Manufacturer’s information, MAC address, . . .

Firmware images

Non-documented format

Volatile memory

Copy of the firmware image executed by the CPU

Network packet structures, temporary buffers

Registers

MANY registers to configure and control the device

Some of them are non-documented

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 11/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 12/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Instrumenting the device

We want to

Get easy access to all kinds of memory

Dump the executing firmware code

Inject and execute some code

Test it

Debug it

At first we have to easily access the device’s memory, so we are
going to write a little kernel module.

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 13/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .
Accessing the device’s internal memory
Getting to debug firmware code

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 14/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Linux Kernel Module

Basics

At boot time, the BIOS assigns each device a physical
memory range

The OS maps this range onto a virtual address range

In MMIO mode, we have to get the device’s base virtual
address then just access it like any other memory

A kernel proxy between the NIC and userland

The module provides primitives for reading and writing inside
the NIC (registers, volatile, EEPROM)

It exposes them to userland by creating a virtual char device

Processes can then use open, read, write, seek syscalls

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 15/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Extracting the firmware code

Firmware dump

We can dump the executed firmware code from userland

Based at address 0x10000 in volatile memory (refering to the
specs)

We can directly disassemble MIPS code, obviously it is not
encrypted, nor obfuscated

Static analysis

Static disassembly analysis already made possible

We will focus on how to dynamically analyze the
executed code

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 16/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .
Accessing the device’s internal memory
Getting to debug firmware code

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 17/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Going further

Plan

Using this kernel proxy, we can easily dump and modify the
device’s memory from userland

Now we have to control what is executed on the NIC, the
firmware code

Two firmware debuggers

InVitroDbg is a firmware emulator based on a modified Qemu

InVivoDbg is a real firmware debugger to control code executed
on the NIC

Both use the kernel proxy to interact with the NIC.

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 18/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

InVitroDbg

A firmware emulator

Emulates the NIC MIPS CPU

Interacts with the physical NIC memory

Mechanism

Based on a modified Qemu

Firmware code embedded in a userland ELF executable

Code segment mapped at the firmware base address

Catches memory faults and redirects accesses to the real
device

Debugging made possible using the GDB stub of Qemu

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 19/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Architecture de InVitroDbg

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 20/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

InVitroDbg

InVitro

Firmware code executed in userland

No injection in the device memory

Architecture can be reused for other devices

A lot of transactions on the PCI bus

Fake memory view from the PCI bus

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 21/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

InVivoDbg

Firmware debugger

Firmware code really executed on the NIC

Controlling the CPU using dedicated registers

Mechanism

CPU control with NIC registers: halt, resume, hbp

CPU registers found in non-documented NIC registers

Debugger core written in Ruby

Integrated with the Metasm dissassembly framework

Real-time IDA-like graphical interface for debugging

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 22/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

InVivoDbg

InVivo

IDA-like GUI

Easily extensible with Ruby scripts

Few PCI transactions required

Real memory view from the NIC CPU

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 23/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Extending InVivoDbg

Execution flow tracing

Reuse the Metasm plugin BinTrace (A. Gazet & Y. Guillot)

Log every basic block executed

Save a trace which can be visualized offline

Support differential analysis of different traces

Interest

Quickly visualize the default execution path of the code

Monitor the effect of various stimuli (received packet, driver
communication. . .) on execution

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 24/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Execution flow trace

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 25/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Extending InVivoDbg

Memory access tracing

Step-by-step firmware code

Log each memory access (lw, sw, lh, sh, lb, sb)

Save the generated trace

Replay the trace

Interest

Does not rely on firmware code analysis

Extracts the very core behavior of the firmware

Logs every register access tells us what the firmware is
actually doing, e.g. how it configures the device

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 26/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Accessing the device’s internal memory
Getting to debug firmware code

Memory access trace

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 27/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 28/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Creating a new firmware: what for?

Multiple purposes

Provides an open-source alternative to proprietary firmware

Creates a rootkit firmware resident in the NIC

Turns a network card into a physical memory dumper
(forensics)

How to get code execution?

Writing the firmware in memory and redirecting $pc

Writing the firmware in EEPROM so that it runs at
bootstrap

We can then use the previous debuggers to debug our own
code!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 29/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware
Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 30/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Understanding the EEPROM layout

EEPROM

Contains non-volatile data

Memory layout is not documented by Broadcom

Layout uncovered by analyzing firmware code

Memory structure

Bootstrap header

Device metadata (revision, manufacturer’s id)

Device configuration (MAC address, power, PCI config, . . .)

Firmware images

Each structure is followed by a CRC32

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 31/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Description of the bootstrap process

Firmware bootstrap

How is the firmware loaded from EEPROM to volatile
memory ?

Method: reset the device and stop the CPU as quick as
possible!

Result: CPU executes code at unknown address 0x4000 0000

So?

This memory zone is execute-only (not read/write), probably
a ROM

Hack: An non-documented device register holds the current
dword pointed by $pc

We can dump the ROM by modifying $pc and polling this
register!

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 32/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Description of the bootstrap process

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 33/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Description of the bootstrap process

No trusted bootstrap sequence!

Bootstrap

Every time the source power is plugged-in, or a PCI reset signal is
issued, or the reset register is set:

1 CPU starts on a boot ROM
Initializes EEPROM access
Loads bootstrap firmware in memory from EEPROM

2 Execution of the bootstrap firmware
Configures the core of the device (power, clocks. . .)
Loads a second-stage firmware from EEPROM

3 Execution of the second-stage firmware
Sets up networking (Ethernet link, MAC, . . .)
Can load another firmware if requested
Tells the driver the device is ready

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 34/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Developing your own firmware

Coding environment

All we need is

A cross-compiled binutils for MIPS

We can start developing our firmware in C

Inject our firmware in the EEPROM

CPU memory mapping

Volatile memory is accessible from address 0

Memory greater than 0xC000 0000 maps into device registers

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 35/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Developing your own firmware

Size requirements

Code can reside between 0x10000 and 0x1c000

48 KB memory shared by code, stack, and incoming packet
buffers

Firmware initialization

Initialize the stack pointer

Configure the device for working (PHY/MAC init)

Then you can add whatever feature you wish

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 36/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware
Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 37/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Network connectivity

Networking capability

It is active on the network even if the machine is shut down

It can listen for incoming packets and forge new packets

But first it needs to detect network configuration (our own IP
address, router address, DNS. . .)

Dynamic network configuration detection

Embeds a very light DHCP client

If no DHCP, tries to catch DNS packets

contain router MAC, DNS server IP and our own IP

Everything can be sent using a fake MAC address

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 38/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Direct Memory Access

DMA

PCI supports Direct Memory Access

The NIC transfers frames from/to physical memory with DMA

Arbitrary DMAs ⇒ compromise the OS memory

How to do arbitrary DMA

1 Modify the physical address where packets are read/written

2 Modify the packet contents in the device memory on-the-fly

3 Force the device to operate a network operation (recv/send)

4 An arbitrary read/write to physical memory is then triggered

Actually MUCH more complicated in practice, but this is the idea

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 39/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Counter-measures

Counter-measures

Rootkit is active before the system boot

→ Use a trusted boot technology, like Intel TXT

Rootkit can corrupt kernel code

→ Use an IOMMU technology, like Intel VT-d

Qubes seems to make use of these features

Also check Loic Duflot & Y-A. Perez talk about runtime
firmware integrity verification (CSW 2011)

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 40/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Plan

1 Overview of the NIC architecture

2 Instrumenting the network card. . .

3 . . . and developing a new firmware
Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 41/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Forensics

Using the NIC for forensics purpose

1 The target system is up and running

2 The NIC is hotplugged on a free PCI slot

3 The device is powered up and the firmware starts

4 The whole physical memory is dumped over the Gigabit link

Device base address

Our device has no base address (normally assigned by BIOS)

We cannot safely retrieve the PCI-bridge physical address

Hopefully we don’t need one, all DMA transactions are
initiated by the NIC

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 42/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Forensics

Getting DMA to work

OS will not crash if we prevent any interrupts to spawn

The firmware has to configure the NIC as would do the driver

We need to write structures in memory for DMAs to work. . .

. . . but we cannot taint physical memory (forensics)

. . . and we cannot use the NIC memory (no base address)

So I use the VGA framebuffer as a temporary memory zone

It has a fixed base address (0xa0000)
Just a few pixels needed
Safe as long as nothing moves above these pixels

This is still a work in progress, no operational demo yet

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 43/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Conclusion

In a nutshell. . .

Reverse engineering of a proprietary firmware for security
purpose

Made possible with a few free open-source tools (Qemu, Ruby,
Metasm, binutils, . . .)
Real-time firmware debugging!
But depends on targeted device (here Broadcom NICs)

No firmware signature/encryption in Broadcom Ethernet NICs

One can build and load its own firmware

To offer an open-source alternative for the community
To build a stealthy rootkit embedded in the NIC
To turn a NIC into a high-speed physical memory dumper

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 44/45

Overview of the NIC architecture
Instrumenting the network card. . .
. . . and developing a new firmware

Flashing the NIC with a custom firmware
Example #1: Rootkit
Example #2: Physical memory dumper

Thank you for your attention!

Questions?

G. Delugré Closer to metal: Reverse engineering the Broadcom NetExtreme’s firmware 45/45

	Overview of the NIC architecture
	Instrumenting the network card…
	Accessing the device's internal memory
	Getting to debug firmware code

	…and developing a new firmware
	Flashing the NIC with a custom firmware
	Example #1: Rootkit
	Example #2: Physical memory dumper

