
Jonathan Brossard 
CTO - P1 Code Security 

jonathan@p1sec.com 
endrazine@gmail.com 



Agenda 

• Practical fuzzing with vm86() 

Introducing Virtual 8086 mode 

The need for new tools 

Attack surface analysis 

Virtualization : big picture 



Virtualization : time to care ! 

Market shares 
Definitions 



Virtualization : 
market shares 

Source : Forrester Research 2009 

78% of companies have production servers 
virtualized. 

20% only have virtualized servers. 



Virtualization : 
market shares 

Source : Forrester Research 2009 

VMWare is present in 98% of the 
companies. 

Microsoft virtualization products are used 
by 17%. 

Citrix/Xen is used by 10%. 



Bottom line... 

Virtualization software are so widespread 
that they have become more attractive 
targets than say web, mail or dns servers ! 

There is a lower variety too ! 



Definitions 



Virtualization : Definitions 

Virtualization 

   Virtualization is the name given to the 
simulation with higher level components, of lower 
level components. 

   NOTE: Virtualization of applications (as 
opposed to full Oses) is out of topic. 



Virtualization : Definitions 

Virtual Machine 

   A virtual machine (VM) is : "an efficient, 
isolated duplicate of a real machine". 

  -- Gerald J. Popek and Robert P. Goldberg (1974). 
"Formal Requirements for Virtualizable Third 
Generation Architectures", Communications of the 
ACM. 



Paravirtualization 



Virtualization : Definitions 

Paravirtualization 

   Requires the modification of the guest 
Oses (eg: Xen, UML, Qemu with kquemu, 
VMWare Workstation with VMWare Tools). 

Opposed to « full virtualization ». 



Virtualization : Definitions 

  There are two types of virtualizations : 
Virtual Machine Monitors (or Hypervisors) 
of type I and type II. 



Type I Hypervisor 



Virtualization : Definitions 

Hypervisors of type I 

  Run on bare metal (eg: Xen, Hyper-V, 
VMWare ESX). 



Type II hypervisor 



Virtualization : Definitions 

Hypervizors of type II 

   Run as a process inside a host OS to 
virtualize guests Oses (eg: Qemu, 
Virtualbox, VMWare Workstation, 
Parallels). 



Hardware assisted 
virtualization 



Hardware assisted 
virtualization 

- Takes advantage of AMD-V On Intel VT-x CPU 
extentions for virtualization. 
- x64 Only. 
- The hypervizor is running in « ring -1 ». 
- Much like the NX bit : requires the motherboard 
to support it and activation in the BIOS. 



Virtualization : Definitions 

Isolation 

   Isolation of the userland part of the OS to 
simulate independant machines (eg: Linux-
Vservers, Solaris « Zones », BSD « jails », 
OpenVZ under GNU/Linux). 



Isolation 



Attack surface analysis 

Depending on your perspective... 

What are the risks ? 
Where to attack ? 



Privilege escalation on the 
host 

VMware Tools HGFS Local Privilege 
Escalation Vulnerability 

(http://labs.idefense.com/intelligence/
vulnerabilities/display.php?id=712) 



Privilege escalation on the 
Guest 

CVE-2009-2267 « Mishandled exception on page fault 
in VMware » Tavis Ormandy and Julien Tinnes 



Attacking other guests 

Vmare workstation guest isolation 
weaknesses (clipboard transfer)  

http://www.securiteam.com/securitynews/
5GP021FKKO.html 



DoS (Host + Guests) 

  CVE-2007-4591 CVE-2007-4593 (bad 
ioctls crashing the Host+Guests) 



Escape to host 

Rafal Wojtczuk (Invisible things, BHUS 
2008) 

IDEFENSE VMware Workstation Shared 
Folders Directory Traversal Vulnerability   
(CVE-2007-1744) 



Attack surface analysis : 
usage 

Hosting two companies on the same 
hardware is very common (shared hosting). 

Getting a shell on the same machine as a 
given target may therefor be a matter of 
paying a few euros a month. 



Attack surface : conclusion 

Owning the Host OS from the Guest is 
practical : security through virtualization is 
a failure. 

Seemingly minor bugs (local, DoS) do 
matter : virtualization amplifies 
consequences.  



The need for dedicated 
methodologies and tools 



The need for new tools : 
example 

How to dynamically test a virtual Hard 
Drive ? 



How to dynamically test a 
virtual Hard Drive ? Naive 

approach 

Standard API : 

ssize_t read(int fd, void *buf, size_t count); 
ssize_t write(int fd, const void *buf, size_t count); 

This would mostly fuzz the kernel, not the Virtual 
Machine :( 

We need something (much) lower level. 



Standard (low level) attack 
vectors 

Ioports: 
outb, outw, outl, outsb, outsw, outsl, 
inb, inw, inl, insb, insw, insl, outb_p, 
outw_p, outl_p, inb_p, inw_p, inl_p 
Problems: sequence, multiple ports 

Ioctls: 
int ioctl(int d, int request, ...)  
Problems : arbitrary input size ! 



How did we used to do it 
« back in the days » ? 

MS Dos : direct access to the hardware 
(interrupts : BIOS, HD, Display, …) 

Can we get back to this ? 



Introducing the  
Virtual 8086 mode 



Introducing the  
Virtual 8086 mode 

Introduced with Intel 386 (1985) 



Intel x86 cpus support 3 modes 

- Protected mode 
- Real mode 
- System Management Mode (SMM) 

Introducing the  
Virtual 8086 mode 



Introducing the  
Virtual 8086 mode 

Protected mode  

   This mode is the native state of the processor. Among the 
capabilities of protected mode is the ability to directly 
execute “real-address mode” 8086 software in a 
protected, multi-tasking environment. This feature is 
called virtual-8086 mode, although it is not actually a 
processor mode. Virtual-8086 mode is actually a protected 
mode attribute that can be enabled for any task. 



Introducing the  
Virtual 8086 mode 

Real-address mode 

    This mode implements the programming environment 
of the Intel 8086 processor with extensions (such as the 
ability to switch to protected or system management 
mode). The processor is placed in real-address mode 
following power-up or a reset. 



Introducing the  
Virtual 8086 mode 

 System management mode (SMM)  

 This mode provides an operating system or executive 
with a transparent mechanism for implementing platform 
specific functions such as power management and system 
security. The processor enters SMM when the external 
SMM interrupt pin (SMI#) is activated or an SMI is 
received from the advanced programmable interrupt 
controller (APIC).  



Nice things about Real 
mode / Virtual 8086 mode 

Direct access to hardware via 
interruptions ! 



example: 

Mov ah, 0x42 ; read sector from drive 
Mov ch, 0x01 ; Track  
Mov cl, 0x02  ; Sector 
Mov dh, 0x03 ; Head  
Mov dl, 0x80  ; Drive (here first HD) 
Mov bx, offset buff ; es:bx is destination 

Int 0x13    ; hard disk operation 



Complexity 

ax*bx*cx*dx (per interruption) 

Id est: [0;65535]^4 ~ 1.8 * 10^19 

=> still huge 

=> much better than ioctl()'s arbitrary input 
length ! 



Introducing the  
Virtual 8086 mode 

Problem is... is this even 
possible inside a virtual 

machine ? 



Introducing the  
Virtual 8086 mode 

A closer look at the boot sequence... 





Introducing the  
Virtual 8086 mode 

The kernel boots in (16b) real mode, and 
then switches to protected mode (32b). 

The cpu normally doesn't get back to real 
mode untill  next reboot. 



Introducing the  
Virtual 8086 mode 

Corollary 

The hypervisor could run under any mode. 
protected mode in practice (being it ring0, 

ring1 or ring3). 

All of the guests run only in protected 
mode.  



Now how to swith to Virtual 8086 mode ? It 
this even possible ? 



Leaving protected mode ? 

      (Ascii Art : Courtesy of phrack 65) 

Setting the VM flag in CR0 under protected mode would get us to Virtual Mode 
Removing the PE flag from CR0 would get us back to real mode 



Leaving protected mode ? 

linux-2.6.31/arch/x86/kernel/reboot.c: 

static const unsigned char real_mode_switch [] = 
{ 

 0x66, 0x0f, 0x20, 0xc0,    /*    movl  %cr0,%eax        */ 
 0x66, 0x83, 0xe0, 0x11,    /*    andl  $0x00000011,%eax */ 
 0x66, 0x0d, 0x00, 0x00, 0x00, 0x60,  /*    orl   $0x60000000,%eax */ 
 0x66, 0x0f, 0x22, 0xc0,    /*    movl  %eax,%cr0        */ 
 0x66, 0x0f, 0x22, 0xd8,    /*    movl  %eax,%cr3        */ 
 0x66, 0x0f, 0x20, 0xc3,    /*    movl  %cr0,%ebx        */ 
 0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60,  /*    andl  $0x60000000,%ebx */ 
 0x74, 0x02,       /*    jz    f                */ 
 0x0f, 0x09,       /*    wbinvd                 */ 
 0x24, 0x10,       /* f: andb  $0x10,al         */ 
 0x66, 0x0f, 0x22, 0xc0     /*    movl  %eax,%cr0        */ 

}; 



Trouble is... 

This obviously won't work inside a virtual 
machine ! 

Because CR[1-4] registers are themselves 
emulated   



IS THIS « GAME OVER » ? 

Actually not quite ... 



Truth is : we don't need to 
switch back to real mode/

virtual 8086 mode ! 

  Most Operating systems offer a way to run 
16b applications (eg: MS DOS) under 
protected mode by emulating a switch to 
Virtual 8086 Mode. 

Notably Windows (x86) and Linux (x86). 



The Windows case 

NTVDM : ntvdm.exe  
« Windows 16b Virtual Machine » 





The Linux case 

The linux kernel provides an emulation of 
real mode in the form of two syscalls: 

#define __NR_vm86old   113 
#define __NR_vm86    166 



The Linux case 

#include <sys/vm86.h> 

int vm86old(struct vm86_struct *info); 

int vm86(unsigned long fn, struct 
vm86plus_struct *v86); 



struct vm86_struct { 
   struct vm86_regs regs; 
   unsigned long flags; 
   unsigned long screen_bitmap; 
   unsigned long cpu_type; 
   struct revectored_struct   
      int_revectored; 
   struct revectored_struct   
   int21_revectored; 

}; 



The Linux case 

linux-2.6.31/arch/x86/include/asm/vm86.h: 

struct vm86_regs { 
   long ebx; 
   long ecx; 
   long edx; 
   long esi; 
   long edi; 
   long ebp; 
   long eax; 
  (…) 
   unsigned short es, __esh; 
   unsigned short ds, __dsh; 
   unsigned short fs, __fsh; 
   unsigned short gs, __gsh; 

}; 



In a nutshell 

- The switch to Virtual mode is entirely emulated 
by the kernel (this will work inside a VM) 
- We can still program using old school 
interruptions (easy !) 
- Those interruptions are delivered to the 
hardware (id est: either the emulated one, or the 
real one). 

=> We just got a « bare metal (possibly 
virtualized) hardware interface » 



The x64 case... 



The x64 case 

X64 cpus in 64b long mode can't swith to 
Virtual mode. 

That's too bad : we'd like to fuzz latest 
Vmware ESX or Microsoft HyperV 
(necessarily under x64). 

But under virtualization, the switch to VM86 
mode is being emulated by the kernel... 



The x64 case 

Using kernel patches, we can add VM86 
capabilities to a x64 GNU/Linux kernel. 

EG: http://v86-64.sourceforge.net to run 
Dosemu under x64. 

What's not possible in real hardware 
becomes possible under a virtualized 

environment ! 



Practical use : Fuzzing using 
vm86() 



Practical use : Fuzzing using 
vm86() 

Looking at the IVT allows us to fuzz 
all the hardware know after BIOS 
Post, efficently (no calls to empty/

dummy interrupts). 



Practical use : Fuzzing using 
vm86() 

Exemple bugs ! 



Practical use : Fuzzing using 
vm86() 

Bugs in hypervizors... 



Virtualbox 

00:21:13.603 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
00:21:13.603 !! 
00:21:13.603 !!                 Guru Meditation -2403 (VERR_TRPM_DONT_PANIC) 
00:21:13.603 !! 
00:21:13.603 !! TRAP=0e ERRCD=0000000000000000 CR2=00000000000c0000 EIP=ff215e33 Type=0 
00:21:13.603 !! EIP in VMMGC.gc (ff1dd000) at rva 38e33 near symbols: 
00:21:13.603 !!    ff215df0 rva 00038df0 off 00000043  _ZL10disCoreOneP12_DISCPUSTATEyPj 
00:21:13.603 !!    ff216040 rva 00039040 off -0000020d DISCoreOneEx 
00:21:13.603 !! fff8:ff215e33 0f b6 10                movzx edx, byte [eax] 
00:21:13.603 !! 
00:21:13.603 !! 
00:21:13.603 !! 
00:21:13.603 Hypervisor CPUM state: se 
00:21:13.603 .eax=000c0000 .ebx=fed69cfc .ecx=00000000 .edx=00000000 .esi=00000001 .edi=fec0
1000 



Virtualbox (take 2) 

00:02:51.129 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
00:02:51.129 !! 
00:02:51.129 !!                 Guru Meditation -2403 (VERR_TRPM_DONT_PANIC) 
00:02:51.129 !! 
00:02:51.129 !! TRAP=0e ERRCD=0000000000000000 CR2=00000000000ab000 EIP=ff215e33 Type=0 
00:02:51.129 !! EIP in VMMGC.gc (ff1dd000) at rva 38e33 near symbols: 
00:02:51.129 !!    ff215df0 rva 00038df0 off 00000043  _ZL10disCoreOneP12_DISCPUSTATEyPj 
00:02:51.129 !!    ff216040 rva 00039040 off -0000020d DISCoreOneEx 
00:02:51.129 !! fff8:ff215e33 0f b6 10                movzx edx, byte [eax] 
00:02:51.129 !! 
00:02:51.129 !! 
00:02:51.129 !! 
00:02:51.129 Hypervisor CPUM state: se 
00:02:51.129 .eax=000ab000 .ebx=fed69cfc .ecx=00000000 .edx=00000000 .esi=00000001 .edi=fec0
1000 
00:02:51.129 .eip=ff215e33 .esp=fed69c7c .ebp=fed69cc4 .iopl=0        rf nv up di nt zr ac pe cy 



More (guest) bugs 



Virtual PC 



Parallels (Guest) 

-------------- Guest processor state --------------- 
Inhibit Mask=0 

CS=FF63 [0000FFFF 0000F30F] V=1 
SS=FFD3 [0000FFFF 00CF9300] V=1 
DS=0018 [0000FFFF 00CFF300] V=1 
ES=0018 [0000FFFF 00CFF300] V=1 
FS=FF9B [0000FFFF 00CF9300] V=1 
GS=0018 [0000FFFF 00CF9300] V=1 

EAX=000000A9 EBX=00005148 ECX=0000F686 EDX=0000000B 
ESI=00002D72 EDI=000007E4 EBP=00002E99 ESP=00000FFA 
EIP=0000FE96 EFLAGS=00023202 



What about x64 ? 



Attacking Microsoft HyperV 



DEMOS 



Adding layers of virtualization is 
actually a bad idea : the only way is to 
secure the software is to properly test 

it for security bugs... 

DEMO 



Questions ? 

Thank you for coming 


