HackInTheBox — Kuala Lumpur - Malaysia

Domingo Montanaro

<conferences@montanaro.org>

Rodrigo Rubira Branco

<rodrigo@kernelhacking.com>

Kuala Lumpur, August 06, 2007

Defeating forensics analysis

- Subverting clones/imaging processes

- Backdoors/Rootkits/Whatever

 Etc ;D

Data Remanence -> Magnetic Media

* From erased data (covering some filesystems)
* From overwritten data

* From destroyed media

Being prepared to the incident

* Turn off or keep turned on the hw? It Depends

* RAM Clone ? Always

» Using the SO or hw specialized with DMA support?

* Take the HD out or clone? Clone

* Physical Manipulation of evidences? For Sure -
Special equipment

* Hard Locks ? You kidding me, right?

Methodology

Straight Lines or curves?

- e T My
S ——

Methodology

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

- ADS
- MD5

Simple image stego

Slack Space

Hiding data inside the "visible" filesystem

Rootkits - Subverting the first step - Imaging

Aligning knowledge — the very beginning

Simple file deletion on FAT filesystem

Fat entry deleted

This indicates that the area
blocks occupied by that file are
now free

Second Step

The file’s registry on the
directory’s entry is modified

First char is changed (ex: Es Hex [Fat32))

Third Step? No! :(

Data is still there

Data blocks are still avaliable for
recovering until other aplication write in
the same clusters

How the recovery process works

Index damaged and Directory entry ok -> Easy recover by parsing directory
information and some items from the Index (example: format on Windows
machines) — Remembering that NTFS stores a copy of it's MFT in the middle of the
unit

No Index and no Directory -> Should be easy by header/footer search and
grabbing the middle contents, but some fragmentation issues could lead to get
“currupted” files, which consist in “garbage” in the middle of a true “"mailbox” file.

Tool to perform recovery on header/footer (and also expected size) search:
foremost

Oops: It's almost impossible to see tools in the wild that perform structured file
analysis, which are totally necessary to recover files by it's internals
characteristics (file format).

For file formats, www.wotsit.org

Fact: Only 1 kb of garbage in a contiguous file of 10MB can lead
to non recovery of this file if no file format comparison is made

Magnetic Level

Causes:

- Data overlapping:
- Changing OS and FileSystem
- Wipe tools

Magnetic Level

Method:

 STM (Scanning Tunneling Microscopy)
 SPM (Scanning Probe Microscopy)

- MFM (Magnetic Force Microscopy) ->
 AFM (Atomic Force Microscopy)

Why? HYSTERESIS
Study: The Hysteresis Loop and

Magnetic Properties

Z-tange: 57 .88 pm

A0 Pm

Q

W

L
1

.

-4 0 il
Ferange: 10 pm

From: LFF — IF - USP

Magnetic Level

B Flux Densit
Y Saturation

Retentivity

N

Coercivity

-H H
Magnetizing Force Magnetizing Force
In Opposite Direction

Saturation

Flux Density

In Opposite Direction —B In Opposite Direction

From Iowa’s State University Center for
Nondestrutive Evaluation NDT (Non Destrutive
Testing)

The loop is generated by measuring the magnetic flux of a
ferromagnetic material while the magnetizing force is changed. A
ferromagnetic material that has never been previously magnetized
or has been thoroughly demagnetized will follow the dashed line as
H is increased. As the line demonstrates, the greater the amount of
current applied (H+), the stronger the magnetic field in the
component (B+). At point "a" almost all of the magnetic domains
are aligned and an additional increase in the magnetizing force will
produce very little increase in magnetic flux. The material has
reached the point of magnetic saturation. When H is reduced to
zero, the curve will move from point "a" to point "b." At this point,
it can be seen that some magnetic flux remains in the material
even though the magnetizing force is zero. This is referred to as the
point of retentivity on the graph and indicates the remanence or
level of residual magnetism in the material. (Some of the magnetic
domains remain aligned but some have lost their alignment.) As the
magnetizing force is reversed, the curve moves to point "c", where
the flux has been reduced to zero. This is called the point of
coercivity on the curve. (The reversed magnetizing force has flipped
enough of the domains so that the net flux within the material is
zero.) The force required to remove the residual magnetism from
the material is called the coercive force or coercivity of the material.
As the magnetizing force is increased in the negative direction, the
material will again become magnetically saturated but in the
opposite direction (point "d"). Reducing H to zero brings the curve
to point "e." It will have a level of residual magnetism equal to that
achieved in the other direction. Increasing H back in the positive
direction will return B to zero. Notice that the curve did not return
to the origin of the graph because some force is required to remove
the residual magnetism. The curve will take a different path from
point "f" back to the saturation point where it with complete the
loop.

Magnetic Level

B Flux Densit
Y Saturation

In other words:

Retentivity

N

Hd’s Heads are only
prepared to read and write 0
or 1.

When one bit is 0 and it
changes to 1, the head will
“read/feel” 1 at the read
— N time, but what is stored in
in Opposie Diectn B 3o Director the media is (for example)
analogic 0,78 value

Coercivity

H
Magnetizing Force

-H
Magnetizing Force
In Opposite Direction

HD’s heads
will read 0
— Electronic Microscopes (such as confocal
blue laser scaning) it is possible to notice
bit 1 original Changed to 0 other “states” — rudimentar 0,12 for

example

Magnetic Level

+ Possible because Information is digital, but it’s supporting technology is analogic

Pictures taken from methods in the previous slides

FIGURE 1:

AN ATOMIC FORCE IMAGE OF MAGNETIC RECORDING MEDIA SHOWING THE SUSPENDED
MAGNETIC PARTICLES (used courtesy of Park Scientific Instruments, http.//shell7. ba.best.com/
~wwwpark/appnotes)

Residuals of overwritten
information on the side of
magnetic disk tracks.
Reproduced with permission
of VEECO

Magnetic Level

« And How about 1-Step wipe? Good enough. Why?

Simply to understand. Hard drives are coming with tons of storage space and
it's “physical size” is always the same (most of the times same number of
platters/heads then the previous model). The platters and heads are almost
the same scheme and the storage size is increasing each time more. So,
various techniques to increase speed/storage capabilities imply on reducing
data recovering from electronic microscopy, such as Zoned Bit Recording

As far as the track is from the center, it
supports more sectors, increasing the
space for storage but drastically reducing
magnetic data recovery

Graphic from PcGuide.com

Damaged Hard Drives

Causes:

 Accidents
- Accidental Falls

- Destroying on purpose

Damaged Hard Drives

Method:

- Platters removal
- Special liquid for clearing the platters

- Low level reading of platters by generics
heads that have pre-configured vectors of
reading

False positive about Defects

Most of data recovery softwares work trough BIOS
(int 13h) or the OS to access disk clusters

1 Cluster normally consists in 1 header, 512 bytes and ECC
byte

When Recovery Software tries to get a cluster from the HD, if it
comes with a ECC bad checksum, it will assume that this
specific cluster is a “bad cluster”

One not-that-hard-to-code backdoor can simply forge this ECC
bad checksum (error types “UNC” — Uncorrectable data - or
AMNF - Address Mark Not Found) statically or dynamic to
keep it’s code on the media hard-to-find.

So, to achieve reading of these sectors, some ATA commands
that ignore ECC need to be issued to recover byte-a-byte
rather then sector-per-sector as most OS and BIOS do.

Acknowledges — The trip is

finishing :(

* Filipe Balestra and Nicolas
Waisman for helping in the
Immunity Debugger Stuff

* HITB crew (mainly to XWings)
for the nice time and patience
here in Malaysia

* Your time in this talk!

Expecting again a Brazilian
Woman? Haha, gotcha! ->

Questions?

Thank you :D

There's where
we come from ;)

Rodrigo Rubira Branco
<rodrigo@kernelhacking.com>
Domingo Montanaro
<conferences@montanaro.org>

Slack Space

Non-addressable space in the MFT than can be written by specfic tools (RAW)

* NTFS uses logical cluster of 4kb
* Files less than 4kb use 4kb (outside MFT)

* Tools can build a own MFT and address directly
on the disk its own blocks to use as a container
for the backdoor (and can mark it as bad block to
the filesystem, so it would not be overwritten)

- Combining this to crypto/steganographic technics
should make the forensics job much harder (and
most of times when it's well done, efforts will be
lost)

Update: Tool: Slacker from the Metasploit project

Slack Sp

| Hex | Sector view: 512 BFS

000 |fer 1 cluster logicoEspago para preencher 1 cluster ldgico Espago para preenche
020 |r 1 cluster légicoEspago para precshcher 1 cluster ldgico Espago para preencher
160 |1 cluster ldgicoEspago para preencher 1 cluster ldgico Espago para preencher 1
Z40 |cluster logicoEspago para preencher 1 cluster légice Espago para preencher 1 el
320 |uster ldgicoEspago para preencher 1 cluster ldgico Espago para preencher 1 clus
400 |ter logicoEspago para preencher 1 cluster logico Espago para preencher 1 cluste
480 [r ldgico. o ...

el L e
EEEN L] L EEEEEN L] L L AEEEER L u

| Hex ||Sector view: 512 BrS

oon [Ms07 BcRufT w2l 8. "gitu O80efI D ¥to GF. @H/i!. |, =0 VIgs |Acriwr0S. @ GAAi4n
og0 (O0ER; 4L [WE{finLe bl ~I0Trd! O-Os4}ibntol v | 2&:@ 9<Eni H s B0:VOSFh, 8. 5. xa
160 |t+K; Aitg@te. T6] 10, . T ub~ ¢ 8RY3%TCA«. . TPEETOE" .- i%NTEEx. *pEsEOQTsg 0 A4 (<den
240 | fpifnodps . &00ar ¢Uhf wevh-I)=M ¥DA.80iud. i:<E *5 AgTTETE 0B -3M .twllK.)z
220 | .ABEAN. 0PoHF®g. AUsd5;2%ne.ix19 ¢ . E.k!Ianc.ols 7/ +f400.EEgéfiaTt. * dei&yTOE. @b - e0°
400 |p <& @Tbinzsé' &y-680$? EEM.€;1L H.UGY. ¢ .p, o gi]Qi81 A, Euf. éym;, ca. _@*t @
480 |TE0. 4. . T.1.Ba™. _ .kee" I, aed K

Slack Space

19B751940
19B751950
19B751960
19B751970
19B751980
19B751990
19B751940
19E7519E0
19B7519C0
19E7519D0
19E7519E0
19E7519F0
19E751400
19B751410
19B751420
19B751430
19BE751440
19B751ALE0
19B751A60
19B751A70
19B751480
19B751490
19B751440
19E751AR0
19BE751ACO
19E751AD0

75
E?
72
63
70
74
20
a1
oD
=3
72
0o
10
13
0&
10
24
24
0g
7F
El
0z
74
FC
A
1C

73
EF
20
EF
22
=3
70
20
04
=3
20
0o
24
01
AL
7C
54
24
EC
Fa
3B
D2
Bl
2C
ED
AC

74
20
a1
oD
=3
72
61
63
4%
EE
BC
0o
aF
=11
=]
Bo
4%
24
B2
EZ2
A9
4F
4B
0OE
oD
04

Sector 13482636 of 14323917

=3
70
20
04
=3
20
72
BC
73
63
F3
0o
92
67
74
0%
5a
40
Bl
7D
B?
34
BF
44
C7
69

72
61
63
4%
EE
BC
61
75
70
62
67
0o
CE
FC
0&
13
54
BF
CC
FC
a9
L&
C1
94
ca
BE

20
72
BC
73
63
F3
20
73
61
=3
69
0o
63
B4
12
F&
4F
F3
o7
C4
94
aD
EF
75
AR
L4

BC
61
75
70
62
67
70
74
E?
72
63
0o
52
75
F3
aD
20
4c
94
ED
ac
F4
FE
DE
1D
40

IDHmt

F3
20
73
61
=3
69
72
=3
EF
20
EF
0o
75
60
4%
D4
4%
03
AF
DC
45
4%
FD
94
o7
A3

67
70
74
E?
72
63
=3
72
20
a1
0o
0o
BE
aD
1E
B4
53
tE
44
FF
a9
FE
AE
B?
59
78

69
72
=3
EF
20
EF
=3
20
70
20
0o
0o
B&
25
0z
L&
43
F3
57
D3
CE
2C
9E
)=
DE
)=

63
=3
72
20
a1
4%
EE
BC
61
63
0o
0o
11
D2
17
CE
4F
ac
CE
CE
27
F2
63
A2
94
24

EF
=3
20
70
20
73
B3
Fa
72
BC
0o
0o
76
ac
A9
C7
4E
7B
72
14
43
oc
o7
12
Eg
FE

45
EE
BC
61
63
70
62
67
61
75
0o
0o
32
CDh
43
EE
44
F1
BC
79
2F
73
CE
34
]
a0

73
63
Fa
72
BC
61
65
69
20
73
0o
0o
4C
CC
2F
24
49
Ad
AR
1E
B&
14
F3
3g
a1
39

70
62
67
61
75
E7
72
63
70
74
0o
0o
01
tE
EE
24
44
4C
aD
13
75
78
ED
52
ac
ca

1396751981

61
65
69
20
73
EF
20
EF
72
65
0o
0o
3g
jull|
AR
24
4F
E&
7E
Eg
E7
Fa
ED
FD
a8
D2

uster loagicoEspa
O para presnche
r 1 cluster loagi
co. . E=paco para

presncher 1 clus
ter loagicoEspaco
para presncher

1 cluster logico
. .E=paco para pr
ecncher 1 cluste

.51 EcRuff.w2L. 8
Cotgidut 101D
CELE . O0F . 9HA1)
.. .E=G’vIC>>***
*TEXTC ESCONDIDO
*xx@iAL . [{8l
cbEL T IWIek
Izatiianiwol v &
4:9 1<EI1E' H-Mu-
D VIAFR. & 2. ®e
trkiAiarElce. 141]
i, . Jiabl- . ¢. 8By
aHYCh. . YRIELINI
L imT@sx . =p19ES

=114

->Hidden Data

Use of redundant/Zero/Align

spaces

Executables (ELF, Win32PE, etc) when compiled, depending on the compiler, most of the
times need to have some space for alignment between soubroutines.

Not a new idea in the IT field, since it's used by virii coders (injecting malware instructions
into space used for alignment)

4AD051A5: C3 RETN ; end of subroutine
4AD0O51A6: 90 NOP ;

4AD051A7: 90 NOP ;
4AD051A8: 90 NOP ;
4AD051A9: 90 NOP ;
4ADO51AA: 55 PUSH EBP ; begin of next subroutine

Alignment that can be used to store data
Can be 0x90, OxCC or signature-based like GCC

On a 2GB “system” filesystem, it's possible to store nearly 1 MB on a “Second Filesystem”
inside the “system?” filesystem, only using alignment spaces (including DLLs) — Need to
remember that relative (short) JMPs are needed to return in the program normal flow.

Going even deeper

So, every filetype has it's possibilities of storing “evil” data, not regarding
compression formats.

Harmful to think on all this knowledge about hiding information (stego) in files to
come in a toolkit.

Scenario:

LibStego — Supports data hiding on several file formats, applying the
parsing tons of these formats from wotsit.org

Supporting: 3 modes of operation

1) Growing up files — Ex: comments on graphic files (as showed
before)

2) Use redundant space on Multimedia formats (GIF, JPEG, AVI,
MOV, etc), OLE formats (doc, xls, ppt, etc — not talking about
compression here too) and others (DWG, CDR, etc)

3) Use alignment space on executable files (PE, ELF, etc)

ADS - Alternate Data Streams

C:\ads>echo "Conteudo Normal" > teste.txt

C:\ads>echo "Conteudo Escondido" > teste.txtiescondido.txt

C:\ads>dir /a & teste.txt:escondido.txt - Bloco =10l x|
Pasta de C: \ads #rquivo Editar Fu:urmata.r fjuda
“Conteudo Escondido™ ﬂ
22/11/2004 00:59 <DIR>
22/11/2004 00:59 <DIR> .o
22/11/2004 00:59 20 teste.txt
1 arquivo(s) 20 bytes

2 pasta(s) 1.696.808.960 bytes disponiveis

C:\ads>type teste.txt
"Conteudo Normal"

C:\ads>notepad teste.txt:escondido.txt

>

Hash Collision

black@bishop:~/quebra md5$ 1ls
l.asc 1l.bin 2.asc 2.bin resultado.txt

black@bishop:~/quebra md5$ cmp l.bin 2.bin
l.bin 2.bin differ: char 20, line 1

black@bishop:~/quebra md5$ md5sum 1l.bin 2.bin
79054025255fbla26e4bc422aef54eb4d 1.bin
79054025255fbla26e4bc422aef54eb4d 2.bin

Hash collision

Not indicated to use only MD5 nowadays

From: Gerardo Richarte - CORE SDI
MD)5 to be considered harmful today

LWINDOWS' system32 cmd.exe - jane_0 & untitled - Motepad

ol x|
File Edit Format Help
F:~Estudos“hashes>jane_# | ;I
C =~ DOCUME™1~MONTAN™1~CONFIG~1~Temp~SHA?C. tmp
i1
W WINDOWS' system32' cmd.exe - jane_1

Edit Yiew Help
F:“Estudos~hashes>jane

0,
C:\DOCUHE"’l\HONTHN"l\Ca:IFIG"’1\1'emp\SH|19D.tmp] mc_El;l
| o]]

ﬂ 4 5 [“ X
MS 1 2 3 - ll
o o

92.168.0.1 - PuTTY

-""" 192.168.0.1 - PuTTY

Same MD5

Same CRC

Hash collision

Again, not good to use only MD5

http://www.doxpara.com/research/md5/confoo.pl

confoo $VERSION: Web Conflation Attack Using Colliding MD5 Vectors and Javascript

Author: Dan Kaminsky(dan\@doxpara.com)
Example: ./confoo www.lockheedmartin.com active.boeing.com/sitemap.cfm

Attack Vectors!

http://www.doxpara.com/stripwire-1.1.tar.gz

Stripwire emits two binary packages. They both contain an arbitrary
payload, but the payload is encrypted with AES. Only one of the
packages ("Fire") is decryptable and thus dangerous; the other ("Ice")
shields its data behind AES. Both files share the same MD5 hash.

Simplistic Image Steganography

 Image files follow their layout standards, as of any
other kind of file

» Each standard has it's own data hiding capabilities
(GIF, BMP, TIFF, etc) — of course, not the onginal
purpose

Ex: GIF89a

« Con: Not many tools to analyze file's layout,
comparing it to a standard layout and a base of
layout possibilities (out-of-range values in some
fields)

And we are not even talking about the graphic part, which implies on techniques such as
Color Reduction, LSB (Least Significant Bit) — noise, etc.

Dumbest stego method ;)

Mome = | Tamanho | Tipo | [rata de modificacdo |
%] logo_hzhe BKE Imagem noformato... 150202006 18:44 — Two simple files
| trecho 535 KE Winamp media file 150212006 15:54

F:“\Estudos~StegTlest>copy logo_h2hc.gif ~b + trecho.mp3
logo_hZ2hc .gif
trecho .mpd

— i
1 arquivo{s? copiado<s?>. Slmply copy command
F:“Estudos~StegTest>

MNome = | Tamanho | Tipo | Data de modificacio |
] logo_hzhe 592 KB Imagem no formata... 16/2/2007 15:05 — The 2 files continue, but notice the size of
4 trecho S35 KE Winamp media File 15212006 15:54 “Iogo h2hc gif,,

E logo_hZhc - ¥isualizador de imagens e |3 - |EI|£|

PLAYLIST EDITOR

OO0 =43P an|XsHE|O D) CID GG = - CIEETLITED

Opening the file on the standard Image Visualization Dragging and dropping the same GIF file on a

G

Userland protections

We enjoined this picture from Julie Tinnes presentation
on Windows HIPS evaluation with Slipfest

After kernel compromise, life is

never the same

There are many techniques in the wild to subvert forensics analisys

In ringO fights, it's all a mess. -> Let's protect the ringO0!

First thing the we should do to analyze a compromised machine is to clone
the RAM contents. Why? Because all binaries in the system can be cheated
statically (binary itself modified) or dynamically (hooked in int80h).

So, what do we find in the RAM analysis? *Should be* Everything

Structures commonly searched in memory

EPROCESS and ETHREAD blocks (with references to the memory pages used by the
process/threads)

Lists like PsActiveProcessList and waiting threads to be scheduled (used for cross-
view detection)

Interfaces(Ex: Ethernet IP, MAC addr, GW, DNS servers)

Sockets and other objects used by running processes (with detailed information
regarding endpoints, proto, etc)

Grabbing RAM contents

RAM clone

Windows

E:\bin\UnicodeRelease>.\dd.exe if=\\.\PhysicalMemory
of=E:\Ram_Clone.bin bs=512 conv=noerror

Linux
king:/mnt/sdal# ./dcfldd if=/dev/mem of=Ram Clone.bin bs=512
conv=noerror

Trustable Method?

Windows Malware

Piece of cake: Malware running in user-space

(99% of trojan horses that attack brazilian users in Scam)

BY Process Explorer - Sysinternals: www.sysinternals.com [KNIGH T\este]

Ble Options Wiew Process Find Users Help
H 2= @y ax as NN
Process FID CPU Description Company Mame
= —] System |dle Process 0 %54
internupts nfa 154 Hardwaie Intenupts
—JDFCs néa Deferred Procedure Calls
= Y smss.exne 4% Windowes NT Session Mana.. Microsoft Corporation
Hcussexe 620 1.54 Chent Server Runbime Process Microsoft Comporation
= I WINOgON exe 648 Apbcativo de logon do'Wind... Microsoft Corporation
= [services exe fz Apkcativo de servigos e con.. Microsoft Coporation
= [svchostexe 1 Genenc Host Process for Wi.. Microsolt Coporation
= [svchost.exe 1000 Generic Host Process for Wi... Microsoft Corporation
& wuauch exe | 408 Ahsslzaches Automdticas Microsoft Comporation
& wuauchexe | 1500 Aluslzacdes Automdticas Microsolt Corporation
[svchostexe 120 Generic Host Process for Wi.. Microsoft Conporation
[svchost.exe 132 Genenic Host Process forWi.. Microsolt Comporation
[spoctsv.exe 1276 Spooler SubSystem App Microsolt Comporation
kass.exe 724 LS4 Shell [Export Yersion] Microzoft Comporation
= I exploter.exe 1620 154 ‘Windows Explorer Microsoft Comporation
A climon. exe 1930 154 CTF Loader Microsoft Coporation
5 smsgs. exe 1992 154 Messenger Chent Microzsoft Comporation
2 pIOCEND. exe 456 1.54 Sysinternals Process Explorer Sysintemals

CPU LUsage: 18.46% Commit Chan]s: 48.31% Processes: 20

Windows Malware

Inject kernel modules to hide themselves

Examples:

« Hacker Defender
« Suckit

 Adore

« Shadow Walker

These rootkits use well known techniques (Ex: IAT hooking) to monitor/subvert user-
space/kernel-space conversations.

Which File?

Kernel-Space

Kernel e\ \.\PhysicalMemory

A

*\\.\PhysicalDriveO

ReadFile() 1
dd.exe

Etc.

User-Space

RAM Forensics — Linux Scenario

On Linux, to proceed with RAM analysis, tools like Fatkit are used (Static memory
dump file analysis)

But at clone time, the destination image can be subverted if the machine is
compromised with a custom rootkit

Is it requesting the addrs
of the backdoor
task_struct?
Yes? So send httpd
task_struct

Kernel-Space
Kernel —

| int0x80 execve - /bin/dcfldd
open - /etc/1ld.so.cache
read - /bin/dcfldd (ELF)
dcfldd mmap2, fstat and others

User-Space

RAM Forensics

ssize t h read(int fd, void *buf, size_ t count)({
unsigned int 1i;
ssize t ret;
char *tmp;
pid_t pid;

If the fd (file descriptor) contains something

that we are looking for (kmem or mem) %nt return_address()
return our hacks to the

return_address(); —¥> original state

At this point we cquld=el®Ck the offset being }

required. If is our backdoor addr, send
another task_struct

ret=o_read(fd,buf,count); int change address()
change address(); {

ge_ O put our hacks into
return ret; —> the kernel

} — }

Windows Malware

Let's say our scanner/detector/memory dumper/whatever resides in Kernel-Space
and althout using ReadFile() uses ZwReadFile or ZwOpenKey or Zw***.

Reliable?

e SST - System Service Tabk Hooking

C:\>SDTrestore.exe
SDTrestore Version 0.2 Proof-of-Concept by SIG"2 G-TEC (www.security.org.sg)

KeServiceDescriptorTable 80559B80
KeServiceDecriptorTable.ServiceTable 804E2D20
KeServiceDescriptorTable.ServiceLimit 284

ZwClose 19 --[hooked by unknown at FA881498]--
ZwCreateFile 25 --[hooked by unknown at FA881E16]--
ZwCreateKey 29 --[hooked by unknown at FA882266]--
ZwCreateThread 35 --[hooked by unknown at FAS80F8E]--
ZWEnumerateKey 47 --[hooked by unknown at FA882360]--
ZwEnumerateValueKey 49 --[hooked by unknown at FA881EDE]--
ZwOpenFile 74 --[hooked by unknown at FA881D6C]--
ZwOpenKey 77 --[hooked by unknown at FA8822E2]--

ZwQueryDirectoryFile 91 --[hooked by unknown at FA881924]--
ZwQuerySystemInformation AD --[hooked by unknown at FA881A4A]--
ZwReadFile B7 --[hooked by unknown at FA8810EE]--
ZwRequestWaitReplyPort C8--[hooked by unknown at FA881310]--
ZwSecureConnectPort D2 --[hooked by unknown at FA8813EA]--
ZwWriteFile 112 --[hooked by unknown at FA881146]--

Number of Service Table entries hooked = 14

Windows Malware

Ok, let's say we want to go deeper and grab
a file directly from the HD: Then we use
loCallDriver() to talk directly with the
HDD.

Reliable?

e IRP (I/O Request Packet) Hooking

Application (Win32 API)

Readfile()

NtReadfile()

(Kernel 32.dll) W

Int 2E
User Mode (Ntd‘"-d")
Kernel Mode 1

KiSystemService
(Ntoskrnl.exe)

v

Call NtReadFile()
(Ntoskrnl.exe)

Initiate 1/0O Operation
(driver.sys)

File System Driver
(ntfs.sys, ...)

Volume manager disk driver
(ftdisk.sys, dmio.sys)

Disk Driver (disk.sys)

Disk port driver (atapi.sys, scsiport.sys)

Disk miniport driver

Disk Array

Fonte: Rootkits — Advanced Malware

Darren Bilby

C*

v

Keep it simple!

How about if our memory grabber just sets up a pointer to offset 0x00 of RAM
memory and copies to another var till it reaches the end of memory? (Regardless
of race conditions to kernel memory)

Reliable?

WatchPoints in memory pages (DRO to DR3)

When our backdoor offset is hit

by the “inspector” it will generate
a #DB (Debug Exception) which we
can work on it

R

Securely? Grabbing the RAM contents

Some hardwares attempt to get the RAM contents

These type of solutions rely on the DMA method of accessing the RAM and
then acting on it (CoPolit) or dumping it (Tribble)

e Tribble — Takes a snapshot (dump)of the RAM
http://www.digital-evidence.org

e CoPilot - Audits the system integrity by looking at the RAM Contents
www.komoku.com/pubs/USENIX-copilot.pdf

e Other Firewire (IEEE 1394) Methods - Michael Becher, Maximilian
Dornseif, Christian N. Klein @ Core05 CanSecWest

Reliable method?

Joanna Rutkowska showed on BlackHat DC 2007 a technic using MMIO that
could lead the attacker to block and trick a DMA access from a PCI card.

The Kernel War

* As Montanaro showed until now in the
presentation, if the attacker compromised the
machine and have access to the kernel, a lot of
problems will appear:

— We can signature detect the forensics tool:
* Multiple (continuous) memory reads
* Multiple (continuous) disk reads

— Even deeper:

« Binary program signature (like antiviruses use to
detect a virus)

 Program behaviour (what the program does? how
they does that?)

Looking for patterns

We have used the excelent Immunity Debugger with a simple python
script to search a binary file for patterns:

allmodules = imm.getAllModules()
for key in allmodules.keys():
imm.Log("Found module: %s" %key)
usekey ="
for key in allmodules.keys():
if key.count(".exe"):
imm.Log("Found executable to dump %s" %key)
usekey = key
break
module_to_dump = allmodules[key]
base = module_to_dump.getCodebase()
size = module_to_dump.getCodesize()
codememory = imm.readMemory(base,size)
hex_codememory = codememory.encode(‘hex-codec')

<Here you put your magic ;) like if you want to recognize sequences of bytes, strings unmodified between versions, etc>

Looking for patterns

< Immunity Debugger - sysAnalyzer.exe

GE29F 1
BE4E2 3R
Ba4823
BE4623
BE4629
Ba4629
BE462A
BE482A
BE4B2A
BE4E2A
Ba482A
BE4BZA

ug Plugins

§ 62 BIES4ER
EZ EEFFFFFF

FIRIRTE

Ident

Entiry

ImmLib

i =

FUSH swsHnaly. 084268504
< JMP. &MSUBUMSB uiBB>

Data b
BE4E29EC| FFFOF@aa

Handles

Handle
HHAEEEZEH
jlalslslolnlel)

Tupes
Desktop
Directory

Pkbzlr

rodu Les
modu Les
modu Le:
rmodu Le:
modu Les
modu Le:

ADVARIZZ2.dL L
ntdll.dll
olesz.dll
MELBUMER. OLL
USERZZ2.dLL
IMMSZ.0LL

Faound
Found
Found
Found
Found
Found
Found

£ T | Info
HEEAFEL1FF
OEE3E8EE3

cuemutable o dumn csuslnalu=er cue

? Want to get paid to use this tool ?

Hame
“Oefau Lt
~EnownDlLs

BE482A GEEEEE14 | Directary BEEF BEEF sl indows

BE48ZA BEAREESE | O irectory . | BEEZEAEF ~BazeMamedlbjects
HE482H HAREAE 1A | Event 3. | BB1FEEES
Ha4a2A HHAEAESY | Event 2. | B81FDBaz
GE4E2a " GEEEEEZC|File [dew) 2. | Bal0EaE1 ~Dew ice~KsecOD
I aieleRE= HHABAEEC | File (dir) 2. | B81066E2E ci~i0OEFEH SE\Syaﬂnalyzer
HHAEAEZE | Key 2. | BEEFBB3F HKEY_LOCAL_MACHIME
HEAEEEZC | Key 2. | BEE2Ea1e HEEY LDEHL_MHEHINE\SVSTEM\EDntrDlSetBBl\EDntrnl\N
HHAEAE4E | Key 2. | BEEzZEE19 HKE% _LOCAL_MACHIME~SYSTEM~ControlSet@@1~Contral~H
Addyr SE handler SSSSSS;: Eey i GS. SSSESS%% HEEV_L?EEQ_HHCH%HE\EVSEEHBEﬁntrolget@@l\CDntrDl\H
eyedEvent . ~Kerne JectsnCritSecOut emoryEvent
881 2FFER| kerne L32. TCESPARS o aonaa| heyedE 9| perEaes
HEREEE1E| Fort 2. | BA1FEEEa1
BEEEEELIC) W indowStat ion 115, | BEEFEIFE sindows =l indowStat ions™~Win5tad
BEEEEEZS | W indowStat ion 115, | BEEFEIFF sWindows =l indowStat ions~Win5tad

HE4E2A45 =T OB &7
Ha4a2A4 7 F7 OB F7
BE4EZR4E 4B OE 4E
HE4AZA49 a7 OB 97
Ha4a2A4
Ba4EazA4
Ha4a2A4
Ha4a2A4
Ba4Ea2A4 v
SE48ZR A RAGED | AEREIAGE| BASH2OEL | be——— .,
Found modu le: RPCRT4.dLL
EEEBEEEE | B8 152088 | G&E8 1AEC| MEVEBUMER | &. 80, 3723 Found module: AOVARIZZ.dLL
Found module: ntdll.dLL
Found modu le: ole3Z.dLl
FrilZedsn| aeeseaEs | FY121558 | OLEAUT22 | 5. 1. 2668 Found module: MESUBUMEE.OLL
rr4EQEER| B81300HE| FP4FOBAL| ole32 5.1.2600H Found modu le: USER3Z2.dLL
TrC1A8E80H | AAA5SHEE| FFCIF2AL| mswvort T.8.2600 Found modu le: IMM32.0LL
TroDaass | aaaepans | 77007e04 | ADUARIZZ| . 1. 2688 Found erecutable to dump swsAnalyzer.eqe
TrEFAEEN| BAA9100A| FFEYS284| RPCRT4 | 5.1.2600 The string ffrd is found?
FrE1EEEE | B4 7EEE | FYF1eE97 | GOI32 E.1.2:e808 Search done in: B seconds
FCEBEEEE | AEEFSEEE | FC2E8EBEAE | kerne 122 5. 1. 2604, —— S
YCPAEEEEH | AREEBENEE| FC913156| ntdl L 5.1.2600.2188 (i Ci~WIMDOWS~systen32~ntdll.dll

Looking for patterns

- The program behaviour is a really easy way to
identify a forensic tool:

— Regular reads to some directories (like configuration
files, libraries and others)

— Start read position in a memory dump (some systems
first try to discover a backdoor manipulating the system,
opening the memory devices, some others just try to
load a kernel module to verify kernel violations, etc)

Detecting forensics tool

- We can hook system loading interfaces to easily
spot a new program been runned, and them
analyse the program and compare to a signature
base:

— ld.so, init_module, Ism, load_binary, do_execve, do_fork,

 But, how about other tools?

Fighting against Forensics tools — The

old school

* A lot of different talks about different ways to hide
information from a Forensics tool — our approach is not
to try to hide it, but discover a forensic tool running in
the system (if someone is analysing the system, is
because they already know something is wrong)

Old school quick tour

- Shadow Walker talk at Blackhat by Sherri Sparks
and Jamie Butler showed the idea of use TLB
desyncronization to hide your rootkit

- Basicly it uses:
— Page fault handling patches

— Pages are marked as non-present, and the page-fault
system will verify if the instruction pointer is pointing to
the faulted address (cr2) to differentiate between a
read/write and one execution

— The page fault system marks this pages as non-pageable
to differentiate between ‘protected’ pages and the
common ones (in Linux if you are just using kernel
pages don't need to care about that)

Old school quick tour

* There are a lot of problems with this approach
against a Forensic analyst (skilled one) — as
spotted by the authors of this idea:

— It's easy to detect IDT modifications and for sure to
check the page faulting mechanics

— Non present pages in non paged memory range are
really not normal

Old school quick tour

* Another approach is to hide your patches to the kernel
using the debugger registers (we covered a lot about
how to do that in our presentation about kernel integrity
protection in the VNSecurity Conference)

* The problem is it can also be verified just using the
segmentation support existent in the platform to
bypass breakpoint hit or (also easy) just patching the
debugging interrupt handling by yourself and trying to
modify the debug registers (it will generate and
exception if someone have set the general detection
flag in dr7)

Anti-forensics hide rootkit

* If you need to use disk (to transfer things to the
machine and don't want to use syscall proxying-like
systems) you can do that in many different ways
(pointed by Montanaro) and also:

— Transfer your data to system memory

— Force it to be loaded in a high virtual memory, and causes a
page-out of this data (you also need to patch the paging
system)

— If it is a big machine you can use kmap to remap your
addresses from ZONE_HIGH to ZONE_NORMAL when you
need to manipulate it (read/write)

— A simple crypting routine using a session key is enough (do
you remember we are protecting the system against a memory
dump) — We don't care about rootkit detection itself

What is needed in an anti-forensic

rootkit?

* It must detect a forensic analysis and react to it
(maybe removing all the evidences, including itself)

* In some way it must be 'pattern free', so it cannot be
detected by common ways (to detect it will be needed
a lot of knowledge from the analyst, and it is almost
impossible to detect if you don't know the rootkit itself)

* Maybe the Virtualized Rootkit is dead, but what about
use another hardware resource in rootkits?

How? SMM!

SMM - System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power
management. After entering SMM, various parts of a
system can be shut down or disabled to minimize power
consumption. SMM operates independently of other

system software, and can be used for..eth&f purposes..,
too. - -

ay s
L] aB

From the Intel386*™ Product Overview — intel.com

SMM and Anti-Forensics?

rsm instruction or reset
Real Address Mode

PE setto O
(Requires ring 0 privileges)
or reset) SMI

l PE set to |

i
SMM Mode

rsm instruction k

Protected Mode J
-

VM set to () T l VM set to 1 during task switch

Virtual 8086 Mode rsm instruction

SMM and Anti-Forensics?

« Duflot paper released a way to turn off BSD protections using SMM

A better approach can be done using SMM, just changing the privilege level
of a common task to RING 0

« The segment-descriptor cache registers are stored in reserved fields of the
saved state map and can be manipulated inside the SMM handler

« We can just change the saved EIP to point to our task and also the privilege
level, forcing the system to return to our task, with full memory access

- Since the SMRAM is protected by the hardware itself, it is really difficult to
detect this kind of rootkit

Descriptor Cache

* From the Intel Manual: “Every segment register has a “visible”
part and a “hidden” part. (The hidden part is sometimes referred
to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access
control information from the segment descriptor pointed to by
the segment selector. “

* RPL — Request Privilege Level
* CPL — Current Privilege Level

* DPL — Descriptor Privilege Level

Descriptor Cache

* In the saved state map (inside SMM):

* TSS Descriptor Cache (12-bytes) - Offset: 7FA4
* IDT Descriptor Cache (12-bytes) - Offset: 7F98
* GDT Descriptor Cache (12-bytes) - Offset: 7F8C
« LDT Descriptor Cache (12-bytes) - Offset: 7F80
* GS Descriptor Cache (12-bytes) - Offset: 7F74
* FS Descriptor Cache (12-bytes) - Offset: 7F68
» DS Descriptor Cache (12-bytes) - Offset: 7F5C
* SS Descriptor Cache (12-bytes) - Offset: 7F50
* CS Descriptor Cache (12-bytes) - Offset: 7F44
» ES Descriptor Cache (12-bytes) - Offset: 7F38

SMM Relocation

 SMM has the ability to relocate its protected memory space.
The SMBASE slot in the state save map may be modified.
This value is read during the RSM instruction. When SMM is
next entered, the SMRAM is located at this new address - in
the saved state map offset 7TEF8

— Some problems to perform CS adjustments

* It can be used to avoid SMM memory dumping for analysis

Generating #SMl's

* We explained really deeply why the system will generate
#SMI in Xcon this year

* Now, we can just instrument our kernel (in any portion of it, so
turning really difficult to detect) an |/O operation to a shared
address between devices (as Duflot spotted in his paper,
0xA0000h) sounds good

 This idea can be used together with a BIOS rootkit, to
configure an SMI handler, lock the SMM (relocating the
SMRAM) and then transfering control back to normal boot
system — if someday the system triggers a SMI, it will install
the backdoor, bypassing all kind of boot protections

-

