

The Computer Forensics
Challenge and Anti-Forensics

Techniques

HackInTheBox – Kuala Lumpur - Malaysia

Domingo Montanaro
<conferences@montanaro.org>

Rodrigo Rubira Branco
<rodrigo@kernelhacking.com>

Kuala Lumpur, August 06, 2007

Agenda

Defeating forensics analysis
• Subverting clones/imaging processes
• Backdoors/Rootkits/Whatever
• Etc ;D
Data Remanence -> Magnetic Media
• From erased data (covering some filesystems)
• From overwritten data
• From destroyed media

Being prepared to the incident

• Turn off or keep turned on the hw? It Depends

• RAM Clone ? Always

Using the SO or hw specialized with DMA support?

• Take the HD out or clone? Clone

• Physical Manipulation of evidences? For Sure –
Special equipment

• Hard Locks ? You kidding me, right?

Methodology

Method!

Straight Lines or curves?

Forensics analysis require deep information technology knowledge

Just a few examples that can simply modify the “guilty-non guilty” boolean variable:

• ADS
• MD5
• Simple image stego
• Slack Space
• Hiding data inside the "visible" filesystem
• Rootkits - Subverting the first step - Imaging

Methodology

Aligning knowledge – the very beginning

Simple file deletion on FAT filesystem

First Step

Fat entry deleted

This indicates that the area
blocks occupied by that file are

now free

Second Step

The file’s registry on the
directory’s entry is modified

First char is changed (Ex: E5 Hex [Fat32])

Third Step? No! :(

Data is still there

Data blocks are still avaliable for
recovering until other aplication write in

the same clusters

How the recovery process works

Index damaged and Directory entry ok -> Easy recover by parsing directory
information and some items from the Index (example: format on Windows
machines) – Remembering that NTFS stores a copy of it’s MFT in the middle of the
unit

No Index and no Directory -> Should be easy by header/footer search and
grabbing the middle contents, but some fragmentation issues could lead to get
“currupted” files, which consist in “garbage” in the middle of a true “mailbox” file.

Tool to perform recovery on header/footer (and also expected size) search:
foremost

Oops: It’s almost impossible to see tools in the wild that perform structured file
analysis, which are totally necessary to recover files by it’s internals
characteristics (file format).
For file formats, www.wotsit.org

Fact: Only 1 kb of garbage in a contiguous file of 10MB can lead
to non recovery of this file if no file format comparison is made

 Certificação Digital

Magnetic Level

• Data overlapping:

- Changing OS and FileSystem

- Wipe tools

Causes:

 Certificação Digital

Magnetic Level

• STM (Scanning Tunneling Microscopy)

• SPM (Scanning Probe Microscopy)

• MFM (Magnetic Force Microscopy) ->

• AFM (Atomic Force Microscopy)

Why? HYSTERESIS

Study: The Hysteresis Loop and

Magnetic Properties

Method:

From: LFF – IF - USP

 Certificação Digital

Magnetic Level

The loop is generated by measuring the magnetic flux of a
ferromagnetic material while the magnetizing force is changed. A
ferromagnetic material that has never been previously magnetized
or has been thoroughly demagnetized will follow the dashed line as
H is increased. As the line demonstrates, the greater the amount of
current applied (H+), the stronger the magnetic field in the
component (B+). At point "a" almost all of the magnetic domains
are aligned and an additional increase in the magnetizing force will
produce very little increase in magnetic flux. The material has
reached the point of magnetic saturation. When H is reduced to
zero, the curve will move from point "a" to point "b." At this point,
it can be seen that some magnetic flux remains in the material
even though the magnetizing force is zero. This is referred to as the
point of retentivity on the graph and indicates the remanence or
level of residual magnetism in the material. (Some of the magnetic
domains remain aligned but some have lost their alignment.) As the
magnetizing force is reversed, the curve moves to point "c", where
the flux has been reduced to zero. This is called the point of
coercivity on the curve. (The reversed magnetizing force has flipped
enough of the domains so that the net flux within the material is
zero.) The force required to remove the residual magnetism from
the material is called the coercive force or coercivity of the material.
As the magnetizing force is increased in the negative direction, the
material will again become magnetically saturated but in the
opposite direction (point "d"). Reducing H to zero brings the curve
to point "e." It will have a level of residual magnetism equal to that
achieved in the other direction. Increasing H back in the positive
direction will return B to zero. Notice that the curve did not return
to the origin of the graph because some force is required to remove
the residual magnetism. The curve will take a different path from
point "f" back to the saturation point where it with complete the
loop.

From Iowa’s State University Center for
Nondestrutive Evaluation NDT (Non Destrutive
Testing)

 Certificação Digital

Magnetic Level

In other words:

Hd’s Heads are only
prepared to read and write 0
or 1.

When one bit is 0 and it
changes to 1, the head will
“read/feel” 1 at the read
time, but what is stored in
the media is (for example)
analogic 0,78 value

bit 1 original Changed to 0

HD’s heads
will read 0

Electronic Microscopes (such as confocal
blue laser scaning) it is possible to notice
other “states” – rudimentar 0,12 for
example

Magnetic Level

Residuals of overwritten
information on the side of
magnetic disk tracks.
Reproduced with permission
of VEECO

Pictures taken from methods in the previous slides

• Possible because Information is digital, but it’s supporting technology is analogic

Magnetic Level

• And How about 1-Step wipe? Good enough. Why?

Simply to understand. Hard drives are coming with tons of storage space and
it's “physical size” is always the same (most of the times same number of
platters/heads then the previous model). The platters and heads are almost
the same scheme and the storage size is increasing each time more. So,
various techniques to increase speed/storage capabilities imply on reducing
data recovering from electronic microscopy, such as Zoned Bit Recording

As far as the track is from the center, it
supports more sectors, increasing the
space for storage but drastically reducing
magnetic data recovery

Graphic from PcGuide.com

 Certificação Digital

Damaged Hard Drives

• Accidents

- Accidental Falls

- Destroying on purpose

Causes:

 Certificação Digital

Damaged Hard Drives

• Platters removal

• Special liquid for clearing the platters

• Low level reading of platters by generics
heads that have pre-configured vectors of
reading

Method:

 Certificação Digital

False positive about Defects

Most of data recovery softwares work trough BIOS
(int 13h) or the OS to access disk clusters

1 Cluster normally consists in 1 header, 512 bytes and ECC
byte

When Recovery Software tries to get a cluster from the HD, if it
comes with a ECC bad checksum, it will assume that this
specific cluster is a “bad cluster”

One not-that-hard-to-code backdoor can simply forge this ECC
bad checksum (error types “UNC” – Uncorrectable data - or
AMNF – Address Mark Not Found) statically or dynamic to
keep it’s code on the media hard-to-find.

So, to achieve reading of these sectors, some ATA commands
that ignore ECC need to be issued to recover byte-a-byte
rather then sector-per-sector as most OS and BIOS do.

Acknowledges – The trip is
finishing :(

• Filipe Balestra and Nicolas
Waisman for helping in the
Immunity Debugger Stuff

• HITB crew (mainly to XWings)
for the nice time and patience
here in Malaysia

• Your time in this talk!

Expecting again a Brazilian
Woman? Haha, gotcha! ->

Thanks!

Questions?

Rodrigo Rubira Branco
<rodrigo@kernelhacking.com>

Domingo Montanaro
<conferences@montanaro.org>

Thank you :D

There's where
we come from ;)

• NTFS uses logical cluster of 4kb

• Files less than 4kb use 4kb (outside MFT)

• Tools can build a own MFT and address directly
on the disk its own blocks to use as a container
for the backdoor (and can mark it as bad block to
the filesystem, so it would not be overwritten)

• Combining this to crypto/steganographic technics
should make the forensics job much harder (and
most of times when it’s well done, efforts will be
lost)

Non-addressable space in the MFT than can be written by specfic tools (RAW)

Slack Space

Update: Tool: Slacker from the Metasploit project

Slack Space

Slack Space

->Hidden Data

Use of redundant/Zero/Align
spaces
Executables (ELF, Win32PE, etc) when compiled, depending on the compiler, most of the

times need to have some space for alignment between soubroutines.

Not a new idea in the IT field, since it's used by virii coders (injecting malware instructions
into space used for alignment)

4AD051A5: C3 RETN ; end of subroutine
4AD051A6: 90 NOP ;
4AD051A7: 90 NOP ;
4AD051A8: 90 NOP ;
4AD051A9: 90 NOP ;
4AD051AA: 55 PUSH EBP ; begin of next subroutine

}Alignment that can be used to store data
Can be 0x90, 0xCC or signature-based like GCC

On a 2GB “system” filesystem, it's possible to store nearly 1 MB on a “Second Filesystem”
inside the “system” filesystem, only using alignment spaces (including DLLs) – Need to
remember that relative (short) JMPs are needed to return in the program normal flow.

Going even deeper

So, every filetype has it's possibilities of storing “evil” data, not regarding
compression formats.

Harmful to think on all this knowledge about hiding information (stego) in files to
come in a toolkit.

Scenario:

LibStego – Supports data hiding on several file formats, applying the
parsing tons of these formats from wotsit.org

Supporting: 3 modes of operation

1) Growing up files – Ex: comments on graphic files (as showed
before)

2) Use redundant space on Multimedia formats (GIF, JPEG, AVI,
MOV, etc), OLE formats (doc, xls, ppt, etc – not talking about
compression here too) and others (DWG, CDR, etc)

3) Use alignment space on executable files (PE, ELF, etc)

C:\ads>echo "Conteudo Normal" > teste.txt

C:\ads>echo "Conteudo Escondido" > teste.txt:escondido.txt

C:\ads>dir /a
Pasta de C:\ads

22/11/2004 00:59 <DIR> .
22/11/2004 00:59 <DIR> ..
22/11/2004 00:59 20 teste.txt
 1 arquivo(s) 20 bytes
 2 pasta(s) 1.696.808.960 bytes disponíveis

C:\ads>type teste.txt
"Conteudo Normal"

C:\ads>notepad teste.txt:escondido.txt

ADS – Alternate Data Streams

Hash Collision

black@bishop:~/quebra_md5$ ls
1.asc 1.bin 2.asc 2.bin resultado.txt

black@bishop:~/quebra_md5$ cmp 1.bin 2.bin
1.bin 2.bin differ: char 20, line 1

black@bishop:~/quebra_md5$ md5sum 1.bin 2.bin
79054025255fb1a26e4bc422aef54eb4 1.bin
79054025255fb1a26e4bc422aef54eb4 2.bin

Hash collision

Not indicated to use only MD5 nowadays

From: Gerardo Richarte - CORE SDI
MD5 to be considered harmful today

Same MD5 Same CRC

Hash collision

Again, not good to use only MD5

http://www.doxpara.com/research/md5/confoo.pl

confoo $VERSION: Web Conflation Attack Using Colliding MD5 Vectors and Javascript
Author: Dan Kaminsky(dan\@doxpara.com)
Example: ./confoo www.lockheedmartin.com active.boeing.com/sitemap.cfm

http://www.doxpara.com/stripwire-1.1.tar.gz

Stripwire emits two binary packages. They both contain an arbitrary

payload, but the payload is encrypted with AES. Only one of the

packages ("Fire") is decryptable and thus dangerous; the other ("Ice")

shields its data behind AES. Both files share the same MD5 hash.

Attack Vectors!

 Certificação Digital

Simplistic Image Steganography

• Image files follow their layout standards, as of any
other kind of file

• Each standard has it's own data hiding capabilities
(GIF, BMP, TIFF, etc) – of course, not the original
purpose

Ex: GIF89a

• Con: Not many tools to analyze file's layout,
comparing it to a standard layout and a base of
layout possibilities (out-of-range values in some
fields)

And we are not even talking about the graphic part, which implies on techniques such as
Color Reduction, LSB (Least Significant Bit) – noise, etc.

Dumbest stego method ;)

Simply copy command

The 2 files continue, but notice the size of
“logo_h2hc.gif”

Opening the file on the standard Image Visualization
app, it comes up what was expected

Dragging and dropping the same GIF file on a
winamp's window, we have 37 seconds of sound.

Two simple files

Userland protections

We enjoined this picture from Julie Tinnes presentation
on Windows HIPS evaluation with Slipfest

In ring0 fights, it's all a mess. -> Let's protect the ring0!

First thing the we should do to analyze a compromised machine is to clone
the RAM contents. Why? Because all binaries in the system can be cheated
statically (binary itself modified) or dynamically (hooked in int80h).

So, what do we find in the RAM analysis? *Should be* Everything

Structures commonly searched in memory

EPROCESS and ETHREAD blocks (with references to the memory pages used by the

process/threads)

Lists like PsActiveProcessList and waiting threads to be scheduled (used for cross-

view detection)

Interfaces(Ex: Ethernet IP, MAC addr, GW, DNS servers)

Sockets and other objects used by running processes (with detailed information

regarding endpoints, proto, etc)

There are many techniques in the wild to subvert forensics analisys

After kernel compromise, life is
never the same

Grabbing RAM contents

RAM clone

Windows

E:\bin\UnicodeRelease>.\dd.exe if=\\.\PhysicalMemory
of=E:\Ram_Clone.bin bs=512 conv=noerror

Linux
king:/mnt/sda1# ./dcfldd if=/dev/mem of=Ram_Clone.bin bs=512
conv=noerror

Trustable Method?

Windows Malware

Piece of cake: Malware running in user-space

(99% of trojan horses that attack brazilian users in Scam)

Windows Malware

Inject kernel modules to hide themselves

Examples:
• Hacker Defender
• Suckit
• Adore
• Shadow Walker

These rootkits use well known techniques (Ex: IAT hooking) to monitor/subvert user-
space/kernel-space conversations.

dd.exe

Kernel

User-Space

Kernel-Space

ReadFile()

Which File?

•\\.\PhysicalMemory

•\\.\PhysicalDrive0

Etc.

RAM Forensics – Linux Scenario

On Linux, to proceed with RAM analysis, tools like Fatkit are used (Static memory
dump file analysis)

But at clone time, the destination image can be subverted if the machine is
compromised with a custom rootkit

dcfldd

Kernel

User-Space

Kernel-Space

int0x80 execve - /bin/dcfldd
open - /etc/ld.so.cache
read - /bin/dcfldd (ELF)
mmap2,fstat and others

Is it requesting the addrs
of the backdoor

task_struct?
Yes? So send httpd

task_struct

RAM Forensics

ssize_t h_read(int fd, void *buf, size_t count){
unsigned int i;
ssize_t ret;
char *tmp;
pid_t pid;

If the fd (file descriptor) contains something
that we are looking for (kmem or mem)

return_address();
At this point we could check the offset being
required. If is our backdoor addr, send
another task_struct
ret=o_read(fd,buf,count);
change_address();
return ret;

}

int change_address()
{
put our hacks into
the kernel
}

int return_address()
{
return our hacks to the
original state
}

Windows Malware

Let's say our scanner/detector/memory dumper/whatever resides in Kernel-Space
and althout using ReadFile() uses ZwReadFile or ZwOpenKey or Zw***.

Reliable?

• SST – System Service Table Hooking

C:\>SDTrestore.exe
SDTrestore Version 0.2 Proof-of-Concept by SIG^2 G-TEC (www.security.org.sg)

KeServiceDescriptorTable 80559B80
KeServiceDecriptorTable.ServiceTable 804E2D20
KeServiceDescriptorTable.ServiceLimit 284

ZwClose 19 --[hooked by unknown at FA881498]--
ZwCreateFile 25 --[hooked by unknown at FA881E16]--
ZwCreateKey 29 --[hooked by unknown at FA882266]--
ZwCreateThread 35 --[hooked by unknown at FA880F8E]--
ZwEnumerateKey 47 --[hooked by unknown at FA882360]--
ZwEnumerateValueKey 49 --[hooked by unknown at FA881EDE]--
ZwOpenFile 74 --[hooked by unknown at FA881D6C]--
ZwOpenKey 77 --[hooked by unknown at FA8822E2]--
ZwQueryDirectoryFile 91 --[hooked by unknown at FA881924]--
ZwQuerySystemInformation AD --[hooked by unknown at FA881A4A]--
ZwReadFile B7 --[hooked by unknown at FA8810EE]--
ZwRequestWaitReplyPort C8 --[hooked by unknown at FA881310]--
ZwSecureConnectPort D2 --[hooked by unknown at FA8813EA]--
ZwWriteFile 112 --[hooked by unknown at FA881146]--

Number of Service Table entries hooked = 14

Windows Malware

Ok, let's say we want to go deeper and grab
a file directly from the HD: Then we use

IoCallDriver() to talk directly with the
HDD.

Reliable?

• IRP (I/O Request Packet) Hooking

Fonte: Rootkits – Advanced Malware

Darren Bilby

I/O Manager

Application

File System Driver
(ntfs.sys, …)

Disk Driver (disk.sys)

Volume manager disk driver
(ftdisk.sys, dmio.sys)

Disk Array

Readfile()
(Win32 API)

NtReadfile()
(Kernel32.dll)

Kernel Mode

User Mode
Int 2E

(Ntdll.dll)

Call NtReadFile()
(Ntoskrnl.exe)

KiSystemService
(Ntoskrnl.exe)

Initiate I/O Operation
(driver.sys)

1 32

Disk port driver (atapi.sys, scsiport.sys)

Disk miniport driver

Keep it simple!

How about if our memory grabber just sets up a pointer to offset 0x00 of RAM
memory and copies to another var till it reaches the end of memory? (Regardless

of race conditions to kernel memory)

Reliable?

WatchPoints in memory pages (DR0 to DR3)

When our backdoor offset is hit
by the “inspector” it will generate
a #DB (Debug Exception) which we
can work on it

Securely? Grabbing the RAM contents

Some hardwares attempt to get the RAM contents

These type of solutions rely on the DMA method of accessing the RAM and
then acting on it (CoPolit) or dumping it (Tribble)

• Tribble – Takes a snapshot (dump) of the RAM

http://www.digital-evidence.org

• CoPilot – Audits the system integrity by looking at the RAM Contents

www.komoku.com/pubs/USENIX-copilot.pdf

• Other Firewire (IEEE 1394) Methods – Michael Becher, Maximillian
Dornseif, Christian N. Klein @ Core05 CanSecWest

Reliable method?

Joanna Rutkowska showed on BlackHat DC 2007 a technic using MMIO that
could lead the attacker to block and trick a DMA access from a PCI card.

The Kernel War

• As Montanaro showed until now in the
presentation, if the attacker compromised the
machine and have access to the kernel, a lot of
problems will appear:

– We can signature detect the forensics tool:
• Multiple (continuous) memory reads
• Multiple (continuous) disk reads

– Even deeper:
• Binary program signature (like antiviruses use to

detect a virus)
• Program behaviour (what the program does? how

they does that?)

Looking for patterns

 allmodules = imm.getAllModules()

 for key in allmodules.keys():

 imm.Log("Found module: %s" %key)

 usekey = ""

 for key in allmodules.keys():

 if key.count(".exe"):

 imm.Log("Found executable to dump %s" %key)

 usekey = key

 break

 module_to_dump = allmodules[key]

 base = module_to_dump.getCodebase()

 size = module_to_dump.getCodesize()

 codememory = imm.readMemory(base,size)

 hex_codememory = codememory.encode('hex-codec')

<Here you put your magic ;) like if you want to recognize sequences of bytes, strings unmodified between versions, etc>

• We have used the excelent Immunity Debugger with a simple python
script to search a binary file for patterns:

Looking for patterns

Looking for patterns

• The program behaviour is a really easy way to
identify a forensic tool:

– Regular reads to some directories (like configuration
files, libraries and others)

– Start read position in a memory dump (some systems
first try to discover a backdoor manipulating the system,
opening the memory devices, some others just try to
load a kernel module to verify kernel violations, etc)

Detecting forensics tool

• We can hook system loading interfaces to easily
spot a new program been runned, and them
analyse the program and compare to a signature
base:

– ld.so, init_module, lsm, load_binary, do_execve, do_fork,
....

• But, how about other tools?

Fighting against Forensics tools – The
old school

• A lot of different talks about different ways to hide
information from a Forensics tool – our approach is not
to try to hide it, but discover a forensic tool running in
the system (if someone is analysing the system, is
because they already know something is wrong)

Old school quick tour

• Shadow Walker talk at Blackhat by Sherri Sparks
and Jamie Butler showed the idea of use TLB
desyncronization to hide your rootkit

• Basicly it uses:
– Page fault handling patches
– Pages are marked as non-present, and the page-fault

system will verify if the instruction pointer is pointing to
the faulted address (cr2) to differentiate between a
read/write and one execution

– The page fault system marks this pages as non-pageable
to differentiate between 'protected' pages and the
common ones (in Linux if you are just using kernel
pages don't need to care about that)

Old school quick tour

• There are a lot of problems with this approach
against a Forensic analyst (skilled one) – as
spotted by the authors of this idea:

– It's easy to detect IDT modifications and for sure to
check the page faulting mechanics

– Non present pages in non paged memory range are
really not normal

Old school quick tour

• Another approach is to hide your patches to the kernel
using the debugger registers (we covered a lot about
how to do that in our presentation about kernel integrity
protection in the VNSecurity Conference)

• The problem is it can also be verified just using the
segmentation support existent in the platform to
bypass breakpoint hit or (also easy) just patching the
debugging interrupt handling by yourself and trying to
modify the debug registers (it will generate and
exception if someone have set the general detection
flag in dr7)

Anti-forensics hide rootkit

• If you need to use disk (to transfer things to the
machine and don't want to use syscall proxying-like
systems) you can do that in many different ways
(pointed by Montanaro) and also:

– Transfer your data to system memory
– Force it to be loaded in a high virtual memory, and causes a

page-out of this data (you also need to patch the paging
system)

– If it is a big machine you can use kmap to remap your
addresses from ZONE_HIGH to ZONE_NORMAL when you
need to manipulate it (read/write)

– A simple crypting routine using a session key is enough (do
you remember we are protecting the system against a memory
dump) – We don't care about rootkit detection itself

What is needed in an anti-forensic
rootkit?

• It must detect a forensic analysis and react to it
(maybe removing all the evidences, including itself)

• In some way it must be 'pattern free', so it cannot be
detected by common ways (to detect it will be needed
a lot of knowledge from the analyst, and it is almost
impossible to detect if you don't know the rootkit itself)

• Maybe the Virtualized Rootkit is dead, but what about
use another hardware resource in rootkits?

How? SMM!

SMM – System Management Mode

The Intel System Management Mode (SMM) is typically
used to execute specific routines for power
management. After entering SMM, various parts of a
system can be shut down or disabled to minimize power
consumption. SMM operates independently of other
system software, and can be used for other purposes
too.

From the Intel386tm Product Overview – intel.com

SMM and Anti-Forensics?

SMM and Anti-Forensics?

• Duflot paper released a way to turn off BSD protections using SMM
• A better approach can be done using SMM, just changing the privilege level

of a common task to RING 0
• The segment-descriptor cache registers are stored in reserved fields of the

saved state map and can be manipulated inside the SMM handler
• We can just change the saved EIP to point to our task and also the privilege

level, forcing the system to return to our task, with full memory access
• Since the SMRAM is protected by the hardware itself, it is really difficult to

detect this kind of rootkit

Descriptor Cache

• From the Intel Manual: “Every segment register has a “visible”
part and a “hidden” part. (The hidden part is sometimes referred
to as a “descriptor cache” or a “shadow register.”) When a
segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access
control information from the segment descriptor pointed to by
the segment selector. “

• RPL – Request Privilege Level

• CPL – Current Privilege Level

• DPL – Descriptor Privilege Level

Descriptor Cache

• In the saved state map (inside SMM):
• TSS Descriptor Cache (12-bytes) - Offset: 7FA4

• IDT Descriptor Cache (12-bytes) - Offset: 7F98

• GDT Descriptor Cache (12-bytes) - Offset: 7F8C

• LDT Descriptor Cache (12-bytes) - Offset: 7F80

• GS Descriptor Cache (12-bytes) - Offset: 7F74

• FS Descriptor Cache (12-bytes) - Offset: 7F68

• DS Descriptor Cache (12-bytes) - Offset: 7F5C

• SS Descriptor Cache (12-bytes) - Offset: 7F50

• CS Descriptor Cache (12-bytes) - Offset: 7F44

• ES Descriptor Cache (12-bytes) - Offset: 7F38

SMM Relocation

• SMM has the ability to relocate its protected memory space.
The SMBASE slot in the state save map may be modified.
This value is read during the RSM instruction. When SMM is
next entered, the SMRAM is located at this new address - in
the saved state map offset 7EF8

– Some problems to perform CS adjustments

• It can be used to avoid SMM memory dumping for analysis

Generating #SMI's

• We explained really deeply why the system will generate
#SMI in Xcon this year

• Now, we can just instrument our kernel (in any portion of it, so
turning really difficult to detect) an I/O operation to a shared
address between devices (as Duflot spotted in his paper,
0xA0000h) sounds good

• This idea can be used together with a BIOS rootkit, to
configure an SMI handler, lock the SMM (relocating the
SMRAM) and then transfering control back to normal boot
system – if someday the system triggers a SMI, it will install
the backdoor, bypassing all kind of boot protections

