5

IX ‘FX' Lindner

B

o)

S}

acCont2007/

Why am | giving this talk?

= Hackers like hex, Oday and NA6™ talks.
= Sorry, there won't be any.

We have more important things

The world is changing!

» |f we don’t fix security ourselves, legislation
will do it for us, and they will surely f*ck it u
big time.

= We know things are broken, it’s hi
we start fixing them

» Ever taken money from an
= Ever bin to a hospital?
* Do you like that?

Security Is a quality iIssue

= To reduce the number of vulnerabllities, the
number of actual faults must be reduced

= Size of commercial software in average
doubles every 18 months

*» The defect density Is stable since 20 years at
0,5 to 2,0 faults per 1000 lines of source

= No change with all the new and shiny .
programming languages (/

So, let's just fix it!

= Top players in industry hired everyone they can get

= Microsoft alone needed more (good) professional security
review for Vista than the market could provide

= But even then: much more code than people to read it

= Open Source approach for public review

= EXxperienced people cost a lot of money, why should they
work for free?

= They are all busy working in the industry anyway.

* Humans do not scale well
= Software doubles every 18 months, remem gef (/
= Can you double security professionals as fa

Automated Software Testing

= Software testing seems to be an evacuated
science field, measured by the publications.

» Today, academia focuses on provably correct
systems for niche applications... like... aircrafts.

* Today'’s testing finds max. 30% of the faults
but eats up 50%-80% of the development

budget c@@

= Security fixes are software modificati
Recurity Lahs

have a chance >15% to cause a ne
least as severe as the fixed issue.

Testing issues

= Software testing research from 1970’s
= We don’'t even manage to invent one new testing method per new
programming language

= Methods don't scale

= Full test of a single addition of 2 variables takes 500 Million Years with
100000 tests per second!

= More tests don’t necessarily find more bugs

= Extreme lack of personal
= Software testers are rare and expensive
» (Decent) security specialists are extremely rare and expensiyvée

= Practitioners from both scenes are no academics and haveé R0 aceess
to research funding whatsoever

Testing Issues: flying blind

= OOP code is currently un-testable
= Unit tests are almost never security relevant

= Automated source code analysis is hard in procedural
code — it's impossible in OOP

= C++ Templates anyone?

= Parallel code execution
* No testing method known

= Cryptographic mechanisms are

= Exercise for the audience:
Prove the correct implementation of a

single cryptographic hash function in C

Silver line at the edge of the screen

= Secure development processes seem to
have some visibly positive impact

= Microsoft’'s SDL is the prime example

= But...

» They are expensive
= They will only be followed while the expected
loss due to security issues is higher than

the cost of the process

The relation between bu
vulnerabilities and exploits

...or why hackers should finally
start to care about accuracy

Terminology

Fault:
The root cause of the fuckup

Error:
Instance of the fault that actually happens (

Vulnerability:
Fault type, for which hackers know how to (mis)use it
to gain elevated privileges
Exploit:
Instance of a vulnerability application, mostly
automatic

The Bug Connection

Fault Intentional trigger
Exploit

7\
o

Classification b Vulnerability

match /

Known attack
method

Skill and time

Fault:
No skill and time required, fuckups are the responsibility of
software designers and developers. (PAL)

Error:
Intentionally causing errors requires some skill a

Vulnerabillity:
Developing a new “bug class” requires creativity and
significant skills and time
Exploit:

Writing an exploit requires little skills but quite some time

What type of squirrel are you?

pOwnage In

Zone-H Method Chart

= known vulnerability (unpatched system) === undisclosed (new) vulnerability configuration administration mistake
brute force attack - social engineering

Zone-H Method per Year

100% -
20% 39498
10003 49830
80% -
70% -
156489
16528 2161
60% -
50% -
40% -
4518
30% -
20%
- 17664 69985 101407
0
0%
2002 (part) 2003

= known vulnerability (unpatched system) B undisclosed (new) vulnerability

O brute force attack

B social engineering

O configuration administration mistake

Total # of Vulnerabilities

| MaSSIVe Increase in the Total # of reported vulnerabilities
number of known =
vulnerabilities

= Extremely complex
configuration of enterprise
solutions

» Further development of
attack methods ©

000000

CVE Vulnerabilities

1400
1200
1000 .
—— Directory traversal
—— Format String
—— Buffer Overflow
— SQL Injection
800 - — XSS
— Authentication bypass
— Denial of Service
—— lllegal file/dir access
600 —— Command execution

400 -

Integer bugs
Race condition
—— Backdoor
-~ Default acc/key

100% —

90% —

80% —

70% —

60% —

50% —

40% —

30% —

20% —

10% —

CVE Vulnerability distribution per year

0% —

1999 2000 2001 2002 2003

W Default acc/key
O Backdoor

O Race condition
B Integer bugs

B Command execution
O llegal file/dir access
B Denial of Service

@ Authentication bypass
B XSS

0O SQL Injection

O Buffer Overflow

B Format String

@ Directory traversal

What part i1s vulnerable?

What do we see?

In the 90s, every OS was easy
to hack by itself.

Around 2000, many servers were EREE
vulnerable pre-authentication

The only solution was to hide

were compromised
Now the attackers foc

What changed since 2000?

= Automatic source code inspection
= RATS/ITS
= Prefast / Prefix

= Security at compile time

= Warnings when using “no-no functions”
such as gets()

= Introduction of stack canaries in all
relevant C compilers

= Security at runtime
= WA X
* |ntroduction of heap canaries
= Address space randomization OXDEADBEEF

Directory traversal Source Code Scanner

3%

Format String
1%

Buffer Overflow

Compiletime Protections

-\ SUrnestian.__

w' Runtime Protections

\\
!, HIPS

Unclassified
48%
. Authentication bypass
1%
Denial of Service
9%
llegal file/dir access
5%
Default acc/key Command execution
0% 7%
Backdoor Racecamiing Integer bugs
0% 1%

0%

Security Paradig

What happened to:
Perimeter Security?

It was introduced to hide the
vulnerableservers. @@= .. B B B B B B B B B N

Great administrative tool to
control what gets exposed

Never really worked well

= Now we tunnel everything
over HTTP and call it Web
Service, just to get past all
those firewalls.

But...

What happened to:
Perimeter Security?

= Higher bandwidth required faster processing. The result:
» Firewall code in Kernel space
= Routers as firewalls
= Everything written in C for speed

= Dynamic protocols need to be filtered. The result:
= More complex filter logic than TCP/IP quadruple matching
= Deep protocol inspection
= What cannot be tunneled through must be terminated at the
firewall. The result:
= VPN termination in firewall products

= VPN Key material on the firewall
= Or —_
Firewall linked to RADIUS / LDAP / Active Directory

So, today’s Firewall is:

= A Multi-Protocol parsing engine
= Written in C

= Running in Kernel space

= Allowed full corporate network acces
= Holding cryptographic key materi

... and still considered a

What happened to:
The Detection Paradigm?

The idea was to detect attacks

It was marketed to detect intrusions

= So how do you detect something that the vendor is not
able to prevent in the first place?

Detection paradigm can not work

» Generation of attacks is always computationally cheaper
than detection.

= Human intelligence is extremely expensive and
surprisingly rare.

Think of IDS logs as Spam mail in you inbo (

= Now imagine you had no spam filter /
= Or -
Imagine you have your current spam filter’s relialili
Recurity Lahs

What happened to:
The Detection Paradigm?

= Thought experiment:
We define a secure server as one that does
not expose a single vulnerability when parsing
and handling the supported protocol.

= Name a single non-trivial, widely used server
that never violated the definition above.

» Calculate the probability of an IDS supposting:
over 140* network and application p%’%jt{ﬁ

comply with the definition.

Kevorny Lans

What happened to:
Intrusion Prevention?

= Anti-Hacker technologies

* Prevent exploitation by preventing known
exploitation techniques

» Faults become bug classes frequently
" Integer bugs
= Un-initialized data bugs
= NULL pointer dereferences

= Some of the architectural technologi
made a difference

What happened to:
The self-defending Network?

» The Cisco Security Monitoring, Analysis and Response
System (CS-MARS) and the Cisco Adaptive Security Device
Manager (ASDM) do not validate the Secure Sockets Layer
(SSL)/Transport Layer Security (TLS) certificates or Secure
Shell (SSH) public keys...

= Processing a specially crafted HTTP GET request may crash
the Cisco Secure Access Control Server CSAdmin service.
This vulnerability is also susceptible to a stack overflow
condition.

= Cisco Security Agent Management Center (CSAMC)
an administrator authentication bypass vulnerability’wh
configured to use an external Lightweight Directofy AQC S
Protocol (LDAP) server for authentication. [/ N\~

What happened to:
The self-defending Network?

= A vulnerabillity in the Cisco Guard may enable an
attacker to send a web browser client to a malicious
website with the use of Cross Site Scripting (XSS)
when the Guard is providing anti-spoofing services
between the web browser client and a webserver.

= Cisco Security Monitoring, Analysis and Response
System ships with an Oracle database. The
database contains several default Oracle accounts
which have well-known passwords.

= Cisco Intrusion Prevention System (IPS) sof
version 5.1 is vulnerable to a denial of seryjc
condition caused by a malformed packet.

/""\

5%

What iIs all this

Reclassification of CVE

Input/Output Errors
15%

Unclass
A47%

Input/Output Errors

Unclass
19%

Interface Failures

OS Interface flaws Data Reference Failures
30%

Logic Flaws
8%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

CVE vulnerabilities reclassified

B OS Interface flaws
O Logic Flaws

O Data Reference Failures
W Interface Failures
O Input/Output Errors

1999

2000

2001

Parser Bugs — the Past

= By far the most common attack vector are
vulnerabillities in code interpreting foreign data, also
Known as parsers
* Protocol parsers

* File format parsers
= |mages
» Office documents

= Programming language parsers _HT ML and vaaScr]p't)
= Almost all of the faults lea allures
= Remember the trend on the previous 51] de?

Parser Bugs XML

= XML Is meant to be always possible to parse If
the structure Is correct

* This assumes that:
* You don’t write a search & copy parser in C
* You don’t parse XML by RegEx
= You validate the XML structul
= You have a XSD along with your XML

Web 2.0

I/O Faults are the rising
class™

Logic faults are stable over
the years

Web 2.0 is all about I/O

= User created (provided) content
= Web service APIs o |

Enormous trust is placed in .
the browser as the only client
a Web 2.0 user needs

= With 128 toolbars installed

= All developed in C/C++

= All running in the address space
of the browser

Web Frameworks

= Complexity kills

= Web frameworks are way to complex
» Microsoft Windows is the complexity showcase

= Use of large amounts of unknown functionality

kil

s as well
Parsing classes
Decoding classes

Databases
Side effects of a

~ormat transformations (

Framework Example: Ruby on Rails

= Ruby on Rails allows rapid web development
= MVC architecture
= Database abstraction

» Default scaffolding prevents standard issues,
but doesn’t provide much either

= A single line of view code can introduce XSS

= Once In the database, the data is mostly trustéd——
by the Rails code ()

» Active Scaffolding can do more
= Comes fully SQL-Injectable in may CASES. . irv Lame

Web Infrastructures

= Mesh-ups just distribute your malicious input faster
and more reliably than anything before

= So far, we have mainly seen individual Web 2.0
applications used to distribute Web Malware

= Think: arbitrary malformed input under the Creative
Commons License

1. Input your “XSS"+"’SQL"+"FormatString” in any Web 2.0
application you can find.

2. Mesh them all up, make your data travel
3. Ask Goggle where your attacks show up

= Back end systems are still old: (/
= CORBA, RPC, DCOM, TIBCO

/"'"-\

Changes in the

Java s secure

No buffer overflows
No (vulnerable) format strings
No direct memory access
Optionally validated code

Java has issues

= Java Is predestined for interface and
Input/Output faults

= UNICODE
» Platform depended file and directory na
» Mass-failing of filters

= Java suffers from race conditions
= Multi-Threaded

= When integrated in multi-process enviropments;
IPC and synchronization issues show

Java has issues standardized

» |nteger overflows are standardized in Java

* The JVM must not generate an exception when
variable overflows or is truncated

Int sum = items * price;

How about:
= price = $1000
= tems = 4.294.

So should we just re

Security Is a design Issue

* We need to design systems the right way
* The security tools are just not working
= Defense in depth Iis one of our few hopes
» Get used to the fact that things break

= \Write less code, but better code

= Not everything you could do yourself should be=
done by yourself a
» Respect that software is there to solve / a(/
problems for people, security isn’t one of thét:
Recurity Lahs

Security Is a design Issue

= Reduce complexity wherever you can
= You will have less to worry about

= Adding another security feature isn’t reducing
complexity at all

= If you find yourself doing that, go back to the
design board

» If you find yourself asking the user for a secun
relevant decision, go back to the design b
square one

= How about asking someone?

Thank you

...for listening to my rants.

Shouts to:

DanKamInSky, 4 N
Phenoelit,
Halvar, Ero, — &) Felix “"FX~ Lindner
shadown, (Y Head
Toralv, Manu, fx@recurity-labs.com
Gramels, Luiz Recurity Lahs

And you © Recurity Labs GmbH, Berlin, Germany

\ http://www.recurity-labs.com

