
�������� ��	
��
��
�	��� 	���������
���

	�
����
���

HITB 2006
Kuala – Lumpur

� ��������� ��	���
��������
�� 	��
�������
�����������

By fyodor and meder
fygrave@o0o.nu meder@o0o.nu

“Nope. we are not
writing another web
scanner!!”

��	���

� Why hacking web applications
� What scanners do. Why they are useless (or not)
� What else could be done, but isn’t (yet)
� Introduction to YAWATT

� User-session based approach
� Distributed
� Intelligent (or not?)
� Modular
� More than “application security scanner” ..

 !�� ��������"��
�	�� 	��

� Good Admins learnt to configure their
firewalls

� Good Admins disable services they don’t
want

� Good Admins even finally know how to use
nmap (and even nessus!!)

….
� But Good Admins still need to provide Web
� And they are not programmers

����� �	# �

� The web applications get complex
� New web frameworks make it even more fun

(AJAX)
� Due to high demand of web application

programmers, many only have “learn
{CGI|PHP|perl|ASP|..} in 24 hours”
experience

 �
�	��	���������
�����	� ����

�	�����	�
���	�����	$���	
� ��
� The code is bad

� Q/A not security oriented
� Must get product to market ASAP

� Firewalls are there – but they can’t help
� IDS are there – but they are blind
� Application “firewalls” - stop limited number of

web application attacks (basic user input
validation), but are useless when it comes to
detection of logical vulnerabilities

 ����	���	%�&
���� �&� � ���

� Libwhisker/nikto – signature based. Relatively
primitive. Efficient for finding default
misconfigiurations and typical vulnerabilities

� Nessus et all – don’t see web applications
beyond the underlying software configuration

� Kavado/Webinspect/N-Stalker/Watchfire
Appscan – intelligent scanners. Session
aware. But closed architecture, “blackbox”
(some allow scripted plugins) and costs
$$$$$$$$$$$$$$$$$$$$$$$$$$

���������	�����	�'
�	�&��

� Single-host based
� Non-extendable, non-correctable.
� Little or no control on “hacking” process

execution flow
� Not easily “extend on the fly” with new

‘automation’ methods
� Often primitive, strict signature based logic

���
�� &���� 	����	�
���%	

� Maximum automation of web
hacking process

� Minimum of code writing.
� Event-driven workflow
� Manual control

(�	���
�	�� ������

� Autonomous functionality (you can shutdown,
restart, reload modules, provide new data on
the fly and so on)

� “Human to machine” knowledge transfer
� Ability to add new ‘hacks’ on the fly
� Deal with uncertainty in “intelligent way”
� Learn from valid user session data

��������
����
�

� Be able to attack web application from
multiple-locations (bypass IP restrictions,
improve brute-forcing process)

� Be able to automate the testing of
application logic bugs

� Be able to make intelligent guesses in case
of uncertainty

)�
��&�����������
� 	
��

��������	�����"�� �&�	��
�	�����

� User sessions – collections of user’s requests
and responses (url, name/value pairs,
session information and selective HTTP
protocol data)

� Classified user session data include semantic
classification of URL, parameters, responses
and HTTP protocol data (server type,
backend system(s) if visible, “unusual” HTTP
headers detected and included)

�&
� �
��

� Application content is learnt from user
sessions (data feeders: proxies,
enumeration tools)

� Real-time content analysis with additional
verification

*�����"���
��

� User session data is classified by:
� Semantic and functional classification of URL
� HTTP protocol classificators (server type,

cookies ..)
� Session classificators
� Input data classification – type, semantics
� Output classification (application error

detection, redirects, “bogus’ responses etc)

*�����"���
������	�������	� ���
��
����%	����
�
�	����
	�

�	�
�������	��

� Plugins (tests) could be executed during
the collection of user session data if any of
user session data triggers certain plugin

� Plugins (tests) are executed on demand,
when user session data is completed

�������)�
	����	��	��� ��	�
��
��� ��	�
��&��	���	%	��� 	�
�

� Web application components (URL) classification
� Semantic classification for web application input

data
� LSI based response analysis (comparison of web

content)
In response analyzers.
� Use of queries to external sources, search engines
� Limited “binary analysis” of downloaded files

(decoding pdf, doc, rtf (other formats later)’
� Generation of target-specific bruteforce dictionaries

+ ,(�-�� �	��	������"	�

� Possibility to create new classification rules
on the fly (and let the system re-learn from it)

� Possibility to ‘reclassify’ application
responses

� Possibility to add new ‘testing’ plugins and
methods on the fly or correct the old ones

+ � ����. /0�������"���
���&�	�

Vulnerability scenario testing – uses
‘classificators’ subscription mechanism.

� For example: login page tester will need
‘login’, ‘executable’ and ‘session’

)��&
���
��������"���
��

. �	�"�������"�	��&�	���	�������
�

����
������	�	��������	�
���

� Other ideas to work on:
� Detection of “hidden” parameters (“intelligent”

fuzzy tests)
� Identification of “hidden” URLs
� Fuzzy recognition of “negative” and ‘positive”

responses using LSI
� Detection of application failures, redirects
� Evaluation and priority based execution for

plugins

1 ��
���&
	�������
	�
&�	

1 ��
���&
	�������
	�
&�	����
�	��
���

���
����
���&
	������������%	��
&�2

� Heterogeneous environment (different
platforms with different software can work
together)

� Distributed brute-forcing. Bypassing IP based
restrictions, bandwidth limitations

� IDS – more tricks to evade
� Bypass packet filtering restrictions (ability to

place agents behind the firewall!)

*� � &����
������	��"��� 	� ������
�	
���2

� Modified version of spread toolkit used as
base
� Robust
� Reliable message delivery
� Portable (windows/unix)
� Available in C/C++ and Java flavours. Bindings

exist for Python, Ruby!
� Spread is used in proof-of concept code and

will be ditched in future!

(�	�����
	����	��	

� Aside from application vulnerabilities, other
things of interest are:
� Email addresses, user ids that could be seen

within web content
� Domain names (within web pages, comments,

binary files, etc)
� Building ‘target-oriented’ dictionary files (used by

brute-force cracking modules)

+ � �
�	�
���	
	�����
�����	��"��
��&
	�"��	��

�������	��	�	��
	�2
� A statistical information extraction method is

applied:
� Step 1:Random similarly styled texts in the same

language as the target application content, are
analyzed and the statistical occurrence of each
word is calculated

� Step 2:Statistical occurrence of each word within
the target website is calculated

� Step 3:The dictionary is produced by selecting
those words which probability produced in Step 1
and Step 2 is significally different

�
�	�����
�����

� Add your plugin code on the fly (attack
automation plugins via subscription
mechanism, classification plugins etc):
� Can’t be simpler:

0��� ��!��������3

� No reload is needed, plugins executed next
time the new data is processed

1 4(�

���������	

� http://o0o.nu/ - pre-release.
� You will need:

� Spread toolkit (www.spread.org)
� Patched version of Ruby, Spread bindings for ruby.

‘classifier’ package (Bayesian, LSI algorithms),
‘mysqldb’

� Burp proxy as data source
� MYSQL database

5 &	�
������������ 	��

Sample questions, pick one: ;---------)
� Why another web hacking tool?
� Can you do X too..?
� Can X be integrated too ..?
� This presentation is boring, any excuse ..? �

������

� Thanks for your patience
� Send us emails if you try the code
� The code, slides and docs will be available in

a while:
http://o0o.nu/

